Hexachlorocyclohexanes (HCHs) are widespread and persistent environmental pollutants, which cause heavy contamination in soil, sediment and groundwater. An anaerobic consortium, which was enriched on β-HCH using a soil sample from a contaminated area of a former pesticide factory, was capable to transform α, β, γ, and δ-HCH via tetrachlorocyclohexene isomers stoichiometrically to benzene and chlorobenzene. The carbon and chlorine isotope enrichment factors (ε and ε) of the dehalogenation of the four isomers ranged from -1.9 ± 0.3 to -6.4 ± 0.7‰ and from -1.6 ± 0.2 to -3.2 ± 0.6‰, respectively, and the correlation of δCl and δC (Λ values) of the four isomers ranged from 1.1 ± 0.1 to 2.4 ± 0.2. The evaluation of Λ and the apparent kinetic isotope effects (AKIE) for carbon and chlorine may lead to the hypothesis that the two eliminated chlorine atoms of α- and γ-HCH were in axial positions, the same as for the β-HCH conformer which has six chlorine atoms in axial positions after ring flip. The dichloroelimination of δ-HCH resulted in distinct AKIE and Λ values as one chlorine atom is in axial whereas the other chlorine atoms are in the equatorial positions. Significant chlorine and carbon isotope fractionations of HCH isomers were observed in the samples from a contaminated aquifer (Bitterfeld, Germany). The Cl/Cl and C/C isotope fractionation patterns of HCH isomers from laboratory experiments were used diagnostically in a model to characterize microbial dichloroelimination in the field study. The comparison of isotope fractionation patterns indicates that the transformation of HCH isomers at the field was mainly governed by microbial dichloroelimination transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2020.116128 | DOI Listing |
F1000Res
January 2025
Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.
Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS - Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France.
In this work, we reexamine the Dailey-Townes model by systematically investigating the electric field gradient (EFG) in various chlorine compounds, dihalogens, and the uranyl ion (). Through the use of relativistic molecular calculations and projection analysis, we decompose the EFG expectation value in terms of atomic reference orbitals. We show how the Dailey-Townes model can be seen as an approximation to our projection analysis.
View Article and Find Full Text PDFChemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!