Circular RNAs (circRNA) are a special kind of covalently closed single-stranded RNA molecules. They have been shown to control and coordinate various biological processes. Recent researches show that circRNAs are closely associated with numerous chronic human diseases. Identification of circRNA-disease associations will contribute towards diagnosing the pathogenesis of diseases. Experimental methods for finding the relation between the diseases and their causal circRNAs are difficult and time-consuming. So computational methods are of critical need for predicting the associations between circRNAs and various human diseases. In this study, we propose an ensemble approach AE-DNN, which relies on autoencoder and deep neural networks to predict new circRNA-disease relationships. We utilized circRNA sequence similarity, disease semantic similarity, and Gaussian interaction profile kernel similarities of circRNAs and diseases for feature construction. The constructed features are fed to a deep autoencoder, and the extracted compact, high-level features are fed to the deep neural network for association prediction. We conducted 5-fold and 10-fold cross-validation experiments to assess the performance; AE-DNN could achieve AUC scores of 0.9392 and 0.9431, respectively. Experimental results and case studies indicate the robustness of our model in circRNA-disease association prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2020.145040 | DOI Listing |
Clin Exp Med
January 2025
Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Poland.
Immune checkpoint inhibitors have improved the treatment of metastatic renal cell carcinoma (RCC), with the combination of nivolumab (NIVO) and ipilimumab (IPI) showing promising results. However, not all patients benefit from these therapies, emphasizing the need for reliable, easily assessable biomarkers. This multicenter study involved 116 advanced RCC patients treated with NIVO + IPI across nine oncology centers in Poland.
View Article and Find Full Text PDFAAPS J
January 2025
Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.
Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFMem Cognit
January 2025
Department of Psychology, Huron University College at Western, 1349 Western Road, London, ON, N6G 1H3, Canada.
Tonal short-term memory has been positively associated with both incidentally acquired absolute pitch memory (e.g., for popular songs) and explicitly learned absolute pitch (AP) categories; however, the relationship between these constructs has not been directly tested within the same individuals.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, Delhi, 110078, India.
This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!