An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network.

Gene

Bioinformatics Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India. Electronic address:

Published: December 2020

Circular RNAs (circRNA) are a special kind of covalently closed single-stranded RNA molecules. They have been shown to control and coordinate various biological processes. Recent researches show that circRNAs are closely associated with numerous chronic human diseases. Identification of circRNA-disease associations will contribute towards diagnosing the pathogenesis of diseases. Experimental methods for finding the relation between the diseases and their causal circRNAs are difficult and time-consuming. So computational methods are of critical need for predicting the associations between circRNAs and various human diseases. In this study, we propose an ensemble approach AE-DNN, which relies on autoencoder and deep neural networks to predict new circRNA-disease relationships. We utilized circRNA sequence similarity, disease semantic similarity, and Gaussian interaction profile kernel similarities of circRNAs and diseases for feature construction. The constructed features are fed to a deep autoencoder, and the extracted compact, high-level features are fed to the deep neural network for association prediction. We conducted 5-fold and 10-fold cross-validation experiments to assess the performance; AE-DNN could achieve AUC scores of 0.9392 and 0.9431, respectively. Experimental results and case studies indicate the robustness of our model in circRNA-disease association prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2020.145040DOI Listing

Publication Analysis

Top Keywords

association prediction
12
deep neural
12
ensemble approach
8
circrna-disease association
8
autoencoder deep
8
neural network
8
human diseases
8
features fed
8
fed deep
8
diseases
5

Similar Publications

Immune checkpoint inhibitors have improved the treatment of metastatic renal cell carcinoma (RCC), with the combination of nivolumab (NIVO) and ipilimumab (IPI) showing promising results. However, not all patients benefit from these therapies, emphasizing the need for reliable, easily assessable biomarkers. This multicenter study involved 116 advanced RCC patients treated with NIVO + IPI across nine oncology centers in Poland.

View Article and Find Full Text PDF

Evaluating the Immunogenicity Risk of Protein Therapeutics by Augmenting T Cell Epitope Prediction with Clinical Factors.

AAPS J

January 2025

Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.

Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.

View Article and Find Full Text PDF

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.

View Article and Find Full Text PDF

Tonal short-term memory has been positively associated with both incidentally acquired absolute pitch memory (e.g., for popular songs) and explicitly learned absolute pitch (AP) categories; however, the relationship between these constructs has not been directly tested within the same individuals.

View Article and Find Full Text PDF

This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!