A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. | LitMetric

AI Article Synopsis

  • The study investigates how environmentally relevant copper (Cu) concentrations affect the metabolism of the fish Cichlasoma amazonarum, focusing on energy production and depletion of ATP.
  • Exposure to 750 and 1500 μg/L Cu resulted in significantly reduced activity of key enzymes, such as branchial mitochondrial creatine kinase and pyruvate kinase, alongside lower ATP levels, indicating metabolic dysfunction.
  • Increased levels of reactive oxygen species and lipid peroxidation were observed in fish exposed to Cu, suggesting that oxidative stress plays a role in bioenergetic imbalance and impairment in energy homeostasis.

Article Abstract

The toxic effects of copper (Cu) are linked to dysfunction of metabolism and depletion of adenosine triphosphate (ATP). Nevertheless, the effects related to phosphoryl transfer network, a network of enzymes to precise coupling of the ATP-production and ATP-consuming process for maintenance of bioenergetic, remain unknown. Therefore, the aim of this study was to determine whether the phosphoryl transfer network could be one pathway involved in the bioenergetic imbalance of Cichlasoma amazonarum exposed for 96 h to environmentally relevant concentrations of Cu found in Amazonia water around mines. Branchial mitochondrial creatine kinase (CK) activity was significantly lower in fish exposed to 1500 μg/L Cu than in the control group, while branchial cytosolic CK activity was significantly greater. Branchial (exposed to 750 and 1500 μg/L Cu) and hepatic (exposed to 1500 μg/L Cu) pyruvate kinase (PK) activity was significantly lower in fish exposed to Cu than in the control group. Branchial and hepatic ATP levels were significantly lower in fish exposed to 1500 μg/L than in the control group. Branchial reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to 750 and 1500 μg/L Cu compared to control. Hepatic ROS and LPO levels were significantly higher in fish exposed to 1500 μg/L than in the control group. Branchial and hepatic Cu levels were significantly higher in fish exposed to 1500 μg/L compared to other groups. Exposure to 750 and 1500 μg/L Cu impairs bioenergetics homeostasis, which appears to be mediated by ROS overproduction and lipid peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2020.108846DOI Listing

Publication Analysis

Top Keywords

fish exposed
24
exposed 1500 μg/l
20
control group
16
group branchial
16
branchial hepatic
12
phosphoryl transfer
12
transfer network
12
lower fish
12
1500 μg/l control
12
750 1500 μg/l
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!