Colocalization of optical coherence tomography angiography with histology in the mouse retina.

Microvasc Res

Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. Electronic address:

Published: November 2020

Optical coherence tomography angiography (OCT-A) allows in vivo, non-invasive, functional imaging of retinal perfusion. The purpose of this study was to determine the reliability of OCT-A in visualizing the complete retinal vasculature by comparing in vivo OCT-A images to matched ex vivo retinal tissue in mice. Adult female C57BL/6 mice were imaged to obtain OCT-A images of the superficial vascular complex, intermediate capillary plexus and deep capillary plexus. Z-stack fluorescence images of whole-mounted retinas, labeled for vascular endothelial cells by anti-isolectin immunohistochemistry and FITC-dextran perfusion, were generated. The OCT-A and fluorescence images were manually colocalized and vessel length measured for each of the techniques. Mean vessel length among all plexuses showed less than 13% difference between OCT-A and lectin immunohistochemistry and less than 4% difference between OCT-A and FITC-dextran perfusion. The strength of the correlation between OCT-A and lectin immunohistochemistry ranged from 0.46-0.95, while that between OCT-A and FITC-perfusion ranged from 0.67-0.88. OCT-A visualized retinal vasculature in vivo to a similar extent in matched ex vivo histology images. Our results show that OCT-A is a reliable method for acquiring in vivo images of retinal perfusion in mice, with the ability to differentiate each vascular plexus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2020.104055DOI Listing

Publication Analysis

Top Keywords

oct-a
11
optical coherence
8
coherence tomography
8
tomography angiography
8
retinal perfusion
8
retinal vasculature
8
oct-a images
8
matched vivo
8
capillary plexus
8
fluorescence images
8

Similar Publications

Obesity and retinal microvasculature dysfunction are linked and impact visual acuity. The aim of this study was to determine the relationship between the HOMA-IR score and the presence of vascular dysfunction (capillary perfusion and flux index) of the optic nerve head (ONH) of the retina in obese patients and to determine its diagnostic performance to predict vascular dysfunction. A case-control study was conducted in 2022 involving individuals from obese and non-obese groups.

View Article and Find Full Text PDF

Focal choroidal excavation (FCE)-related choroidal neovascular membrane (CNV) in a child.

Retin Cases Brief Rep

June 2024

Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905.

Purpose: To report the rare clinical, optical coherence tomography (OCT), and OCT-angiography findings of a visually significant choroidal neovascular membrane (CNV) in the setting of focal choroidal excavation (FCE) in a child.

Methods: Case report and literature review.

Results: A 9-year-old girl with FCE-related central CNV based on clinical findings and multimodal imaging.

View Article and Find Full Text PDF

Background: This study aims to compare the posterior ocular structure parameters in children with migraine without aura (MWA), tension-type headache (TTH), and a healthy control group.

Methods: The study included 31 patients with MWA, 29 patients with TTH, and 38 healthy controls between 6 and 18 years of age. For all participants, the detailed eye examination and measurements including peripapillary retinal nerve fiber layer (pRNFL) thickness, central macular thickness (CMT), subfoveal choroidal thickness (SCT), macular vessel densities and foveal avascular zone (FAZ) parameters measured by optical coherence tomography (OCT) and OCT-angiography (OCTA), were obtained from the patient files.

View Article and Find Full Text PDF

Alzheimer’s disease is the fifth-leading cause of death for adults over the age of 65. Retinal imaging has emerged to find more accurate diagnostic tool for Alzheimer’s Disease. This paper highlights Hao et al.

View Article and Find Full Text PDF

Predicting Plaque Regression Based on Plaque Characteristics Identified by Optical Coherence Tomography: A Retrospective Study.

Photodiagnosis Photodyn Ther

January 2025

Department of Cardiology, Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing 211166, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Background: Atherosclerosis is a lipid-driven, systemic immune-inflammatory disease characterized by the accumulation of plaque within the arterial walls. Plaque regression can occur following appropriate treatment interventions. Optical coherence tomography (OCT), a high-resolution imaging modality, is frequently employed to assess plaque morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!