Artificial Intelligence and Machine Learning in Radiology: Current State and Considerations for Routine Clinical Implementation.

Invest Radiol

Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA.

Published: September 2020

Although artificial intelligence (AI) has been a focus of medical research for decades, in the last decade, the field of radiology has seen tremendous innovation and also public focus due to development and application of machine-learning techniques to develop new algorithms. Interestingly, this innovation is driven simultaneously by academia, existing global medical device vendors, and-fueled by venture capital-recently founded startups. Radiologists find themselves once again in the position to lead this innovation to improve clinical workflows and ultimately patient outcome. However, although the end of today's radiologists' profession has been proclaimed multiple times, routine clinical application of such AI algorithms in 2020 remains rare. The goal of this review article is to describe in detail the relevance of appropriate imaging data as a bottleneck for innovation, provide insights into the many obstacles for technical implementation, and give additional perspectives to radiologists who often view AI solely from their clinical role. As regulatory approval processes for such medical devices are currently under public discussion and the relevance of imaging data is transforming, radiologists need to establish themselves as the leading gatekeepers for evolution of their field and be aware of the many stakeholders and sometimes conflicting interests.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000673DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
routine clinical
8
imaging data
8
intelligence machine
4
machine learning
4
learning radiology
4
radiology current
4
current state
4
state considerations
4
considerations routine
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling.

Stem Cell Res Ther

January 2025

Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.

The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!