We tested the hypothesis that reduced-salt versions of four "better-for-you" dishes enhanced with monosodium glutamate (MSG) through a "Salt Flip" in an amount that still substantially reduced total sodium matched the consumer acceptance of normal-salt versions. Three versions each-standard recipe with normal salt, reduced salt, and reduced salt with MSG, of four dishes-roasted vegetables (RV), quinoa bowl (QB), savory yogurt dip (SD), and pork cauliflower fried rice (CR) were evaluated by 163 consumers for overall liking and liking of appearance, flavor, and texture/mouthfeel on the nine-point hedonic scale, preference, adequacy of flavor, saltiness, and aftertaste on just-about-right (JAR) scales, likeliness to order, and sensory characteristics by check-all-that-apply. For each dish, the MSG recipe was liked the same (or significantly more for SD, P < 0.05) than the standard recipe, and better than the reduced salt recipe for QB and CR. The same was true of likeliness to order. MSG recipes of QB and SD were significantly preferred to the standard recipes, with no difference for RV and CR. MSG recipes were consistently described as "delicious," "flavorful," and "balanced." Penalty-lift analysis showed that "delicious," "flavorful," "balanced," "fresh," and "savory"; and "bland," "rancid," and "bitter," were positive and negative drivers of liking, respectively. Two of three uncovered preference clusters, accounting for 68% of consumers, consistently liked MSG recipes, and the same or more so than standard recipes. We conclude that MSG can successfully be used to mitigate salt and sodium reduction without compromising consumer acceptance of better-for-you foods. PRACTICAL APPLICATION: The Salt Flip offers a promising dietary sodium reduction strategy through the addition of monosodium glutamate (MSG) to reduced-salt, savory, better-for-you foods that does not compromise consumer acceptance of their sensory profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540316PMC
http://dx.doi.org/10.1111/1750-3841.15354DOI Listing

Publication Analysis

Top Keywords

monosodium glutamate
8
glutamate msg
8
salt reduced
8
reduced salt
8
salt
5
salt flip
4
flip sensory
4
sensory mitigation
4
mitigation salt
4
salt sodium
4

Similar Publications

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

Obesity is a global health crisis linked to numerous adverse outcomes including cardiovascular disease, type 2 diabetes, cancer and cognitive decline. This study investigated the sex-specific effects of monosodium glutamate (MSG)-induced obesity on learning, memory, anxiety-like behavior, oxidative stress, and genotoxicity in rats. In 32 neonatal Wistar albino rats, subcutaneous MSG injections were administered to induce obesity.

View Article and Find Full Text PDF

Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.

View Article and Find Full Text PDF

Enhancing High-Level Food-Grade Expression of Glutamate Decarboxylase and Its Application in the Production of γ-Aminobutyric Acid.

J Microbiol Biotechnol

December 2024

School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.

Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods: This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!