Nitrogen (N) deficiency adversely affects tree growth. Additionally, γ-aminobutyric acid (GABA) is closely associated with growth and stress responses because of its effects on carbon (C) and N metabolism. However, little is known about its roles related to plant adaptations to N-deficient conditions. In this study, we analyzed the effects of GABA (0, 2 and 10 mM) applications on the growth traits and physiological responses of poplar (Populus alba × P. glandulosa '84K') seedlings under high N (HN) and low N (LN) conditions. We found that the added GABA interacted with N to affect more than half of the studied parameters, with greater effects in LN plants than in HN plants. Under LN conditions, the GABA application tended to increase poplar growth, accompanied by increased xylem fiber cell length and xylem width. In stems, exogenous GABA increased the abundance of non-structural carbohydrates (starch and sugars) and tricarboxylic acid cycle intermediates (succinate, malate and citrate), but had the opposite effect on the structural C contents (hemicellulose and lignin). Meanwhile, exogenous GABA increased the total soluble protein contents in leaves and stems, accompanied by significant increases in nitrate reductase, nitrite reductase and glutamine synthetase activities in leaves, but significant decreases in those (except for the increased glutamate synthetase activity) in stems. A multiple factorial analysis indicated that the nitrate assimilation pathway substantially influences poplar survival and growth in the presence of GABA under LN conditions. Interestingly, GABA applications also considerably attenuated the LN-induced increase in the activities of leaf antioxidant enzymes, including peroxidase and catalase, implying that GABA may regulate the relative allocation of C and N for growth activities by decreasing the energy cost associated with stress defense. Our results suggest that GABA enhances poplar growth and adaptation by regulating the C and N metabolic flux under N-deficient conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpaa101 | DOI Listing |
Cell Biosci
January 2025
Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Background: Japanese encephalitis (JE) induced by Japanese encephalitis virus (JEV) infection is the most prevalent diagnosed epidemic viral encephalitis globally. The underlying pathological mechanisms remain largely unknown. Given that viruses are obligate intracellular parasites, cellular metabolic reprogramming triggered by viral infection is intricately related to the establishment of infection and progression of disease.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou, China.
Introduction: Tomato fruit are rich in -aminobutyric acid (GABA), which lowers blood pressure and improves sleep. An increase in GABA content is important for enhancing the nutritional quality of tomato fruit.
Methods: To investigate the effects of 5-aminolevulinic acid (ALA) on fruit quality and GABA synthesis in greenhouse tomatoes, the tomato cultivar ( cv.
MicroPubl Biol
December 2024
Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan.
In , axial elongation beyond the tailbud stage requires gamma-aminobutyric acid (GABA). However, the role of GABA synthesized during early development in this process remains unclear. In this study, by treating embryos with allylglycine (AG), an inhibitor of GABA synthesis, we observed a significant reduction in axial elongation.
View Article and Find Full Text PDFJ Biotechnol
February 2025
College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:
Int J Mol Sci
December 2024
Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
Oxidative stress develops when there is an excess of oxidants leading to molecular and cellular damage. Seizure activity leads to oxidative stress and the resulting increased lipid peroxidation. Generally, antiseizure medications reduce oxidative stress, although the data on levetiracetam are ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!