Most organisms have finite life spans. The maximum life span of mammals, for example, is at most some years, decades, or centuries. Why not thousands of years or more? Can we explain and predict maximum life spans theoretically, based on other traits of organisms and associated ecological constraints? Existing theory provides reasons for the prevalence of ageing, but making explicit quantitative predictions of life spans is difficult. Here, I show that there are important unappreciated differences between two backbones of the theory of senescence: Peter Medawar's verbal model, and William Hamilton's subsequent mathematical model. I construct a mathematical model corresponding more closely to Medawar's verbal description, incorporating mutations of large effect and finite population size. In this model, the drift barrier provides a standard by which the limits of natural selection on age-specific mutations can be measured. The resulting model reveals an approximate quantitative explanation for typical maximum life spans. Although maximum life span is expected to increase with population size, it does so extremely slowly, so that even the largest populations imaginable have limited ability to maintain long life spans. Extreme life spans that are observed in some organisms are explicable when indefinite growth or clonal reproduction is included in the model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403686PMC
http://dx.doi.org/10.1002/evl3.173DOI Listing

Publication Analysis

Top Keywords

life spans
24
maximum life
16
drift barrier
8
life
8
spans maximum
8
life span
8
medawar's verbal
8
mathematical model
8
population size
8
spans
6

Similar Publications

Parental well-being is linked to the life chances of adult children in later life. Despite accumulated knowledge on the role of children's education on parental longevity in developed contexts, it remains unknown how children's education may influence the trajectories of parental physical well-being over the aging process, particularly in developing contexts. Using a growth curve model and four-wave data from the China Health and Retirement Longitudinal Study, this study examines the association between children's education and parental physical functioning trajectories as parents age.

View Article and Find Full Text PDF

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Two-dimensional cell membrane chromatography guided screening of myocardial protective compounds from Yindan Xinnaotong soft capsule.

Chin Med

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.

Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!