Background: Dentin hypersensitivity is primarily caused due to patent or exposed dentinal tubules. Nonfluoridated-desensitizing agents deposit hydroxycarbonate apatite (HCA), within the dentinal tubules, thereby relieving hypersensitivity. Fluoride-containing bioactive glass-based agents form fluorapatite which is less soluble when compared to hydroxyapatite and HCA.
Materials And Methods: In this study forty dentin specimens obtained from extracted human premolars were divided randomly into four groups ( = 10): Group 1 - fluoridated bioactive glass (FBaG); Group 2 - bioactive glass (BaG); Group 3 - arginine calcium carbonate; Group 4 - saline. 37.5% phosphoric acid was used to ensure patent dentinal tubules. Test agents from each group were applied using a rubber cup. Half the treated samples were then subjected to 6% citric acid treatment. The degree of occlusion was evaluated using the scanning electron microscope, and the microscopic images were scored before and after the citric acid challenge by two blinded endodontists. Statistical analysis was performed using SPSS, one-way ANOVA, and post hoc Tukey test ( = 0.05).
Results: Group 1 demonstrated better tubule occlusion in comparison with Group 2 and a statistically significant difference when compared to Group 3 ( = 0.001). Following acid challenge, Group 2 showed significantly more occluded tubules when compared with Group 3 ( = 0.001) and comparable difference with Group 1.
Conclusion: All desensitizing agents showed satisfactory dentinal tubule occlusion. While fluoridated bioactive glass demonstrated better occlusion immediately after application, Bioactive glass showed better resistance to acid treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386371 | PMC |
Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada.
This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.
The development of new bioactive glasses (BGs) with enhanced bioactivity and improved resistance to crystallization is crucial for overcoming the main challenges faced by commercial BGs. Most shaping processes require thermal treatments, which can induce partial crystallization, negatively impacting the biological and mechanical properties of the final product. In this study, we present a novel bioactive glass composition, S53P4_MSK, produced by a melt-quench route.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!