Photobiomodulation has been shown to improve tissue and cell functions. We evaluated the influence of photobiomodulation, using a B-Cure laser, on: 1) maximal performance, and 2) muscle recovery after resistance exercise. Two separate crossover randomized double-blinded placebo-controlled trials were conducted. Sixty healthy physical education students (28 men, 32 women), aged 20-35, were recruited (30 participants for each trial). Participants performed two interventions for each experiment, with real lasers (GaAlAs, 808 nm) on three quadricep locations in parallel (overall treatment energy of ~150J) or sham (placebo) treatment. In the first experiment muscle total work (TW) and peak torque (PT) were measured by an isokinetic dynamometer in five repetitions of knee extension, and in the second experiment muscle recovery was measured after the induction of muscle fatigue by evaluating TW and PT in five repetitions of knee extension. There were no differences between treatments (real or sham) regarding the TW (F(1,28) = 1.09, p = .31), or PT (F(1,29) = .056, p = .814). In addition, there was no effect of photobiomodulation on muscle recovery as measured by the TW (F(1,27) = .16, p = .69) or PT (F(1,29) = .056, p = .814). Applying photobiomodulation for 10 min immediately before exercise did not improve muscle function or muscle recovery after fatigue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386143PMC
http://dx.doi.org/10.2478/hukin-2019-0138DOI Listing

Publication Analysis

Top Keywords

muscle recovery
16
muscle
9
experiment muscle
8
repetitions knee
8
knee extension
8
recovery measured
8
f129 056
8
056 814
8
photobiomodulation
5
photobiomodulation therapy
4

Similar Publications

Background: Although transcutaneous spinal cord stimulation (tSCS) has been suggested as a safe and feasible intervention for gait rehabilitation, no studies have determined its effectiveness compared to sham stimulation.

Objective: To determine the effectiveness of tSCS combined with robotic-assisted gait training (RAGT) on lower limb muscle strength and walking function in incomplete spinal cord injury (iSCI) participants.

Methods: A randomized, double-blind, sham-controlled clinical trial was conducted.

View Article and Find Full Text PDF

Analysis of the cardiotoxic and myorelaxant effects of camphor on fish of the Nile tilapia species (Oreochromis niloticus) (Linnaeus 1758).

Sci Rep

January 2025

Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Pará (UFPA), UFPA Campus Belém, Rua Augusto Corrêa No 01 Guamá, Belém, PA, CEP: 66075 - 110, Brazil.

The present study aimed to characterize the behavior and evaluate the electromyographic (EMG), electrocardiographic (ECG), and respiratory responses of Nile tilapia (Oreochromis niloticus) when exposed to different concentrations of Camphor (CPR) as a potential anaesthetic in immersion and recovery baths. The goal was to determine the impact of CPR on muscle, cardiac, and respiratory functions, and assess its suitability as an anesthetic for tilapia. Therefore, juvenile fish (38.

View Article and Find Full Text PDF

Objectives: Fatigue and sleep disorders are common geriatric conditions and are associated with an increased risk of cognitive decline. This study aimed to examine the relationships among self-perceived fatigue, objective muscle fatigue, sleep apnea risk, insomnia, and cognitive function, focusing on their associations with mild cognitive impairment (MCI).

Design: Cross-sectional study.

View Article and Find Full Text PDF

The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with atrophy, in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without (RA) or with (RAM) mechanotherapy (study 1), or to WB, HS for 7 days, with (HSM) or without mechanotherapy (study 2) to gastrocnemius. Muscle fiber cross sectional area (CSA) and type, collagen, satellite cell number, and protein synthesis (K) and degradation (K) were assessed.

View Article and Find Full Text PDF

We investigated the effect of anticipation on the proactive and reactive neuromechanical responses of the distal leg muscles in 20 young adults to anticipated and unanticipated rapid anterior or posterior treadmill-induced balance perturbations applied during walking. We quantified local medial gastrocnemius (MG) and tibialis anterior (TA) neuromechanics using cine B-mode ultrasound and surface electromyography before, during, and after the perturbation. Our findings partially supported the hypothesis that anticipated perturbations would elicit greater proactive agonist muscle adjustments than unanticipated perturbations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!