Osteosarcoma is one of the most common primary malignant bone tumors in adolescents. It is associated with high risk of relapse and the outcomes of patients with high-grade osteosarcoma remain poor. Therefore, additional studies investigating the molecular mechanisms involved in tumor initiation, growth, migration and invasion of osteosarcoma are necessary. In the present study, the protein levels of solute carrier family 25 member 10 (SLC25A10) were increased in osteosarcoma tissue, compared with normal bone tissue. In patients with osteosarcoma, high expression levels of SLC25A10 were associated with poor clinicopathological parameters, including metastasis, clinical Enneking stage, relapse-free survival and overall survival rates. Short hairpin RNA knockdown of SLC25A10 significantly suppressed cell proliferation as determined by cell counting, MTT assay and cell colony formation assays. In addition, SLC25A10 knockdown caused an increase in apoptosis and a decrease in mitosis in osteosarcoma cells. Cyclin E1 (CCNE1) was positively regulated by SLC25A10, while P21 and P27 were negatively regulated by SLC25A10. Therefore, SLC25A10 may play an oncogenic role in human osteosarcoma, which could be mediated by CCNE1, P21 and P27.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405602PMC
http://dx.doi.org/10.3892/ol.2020.11863DOI Listing

Publication Analysis

Top Keywords

slc25a10
8
oncogenic role
8
role human
8
osteosarcoma
8
human osteosarcoma
8
regulated slc25a10
8
p21 p27
8
slc25a10 performs
4
performs oncogenic
4
osteosarcoma osteosarcoma
4

Similar Publications

Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced.

View Article and Find Full Text PDF

Human mitochondrial carriers of the SLC25 family function as monomers exchanging substrates with a ping-pong kinetic mechanism.

EMBO J

August 2024

Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously.

View Article and Find Full Text PDF

Objective: Sageretia theezans is one of the classic medicines in ancient times, which is commonly used to treat scabies, lacquer sores, acute and chronic pharyngitis, Tonsillitis, Cholecystitis, secondary infection of hemorrhoids, and other symptoms. However, the potential molecular mechanism of Sageretia theezans is still unclear. In this study, we explored the active compounds of Sageretia theezans in the treatment of hemorrhoids (HD), predicted the potential targets of drugs, and verified their functions through network pharmacology and in vivo and in vitro experiments.

View Article and Find Full Text PDF

The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22.

View Article and Find Full Text PDF

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight , and the human intestinal protozoan . In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!