Abyssinone V-4' methyl ether (AVME) isolated from was recently reported to exhibit anti-mammary tumor effect in mice. The present work was therefore aimed at elucidating its cellular and molecular mechanisms. To achieve our goal, the cytotoxicity of AVME against tumoral and non-tumoral cell lines was evaluated by resazurin reduction test; flow cytometry allowed us to evaluate the cell cycle and mechanisms of cell death; the mitochondrial transmembrane potential, reactive oxygen species (ROS) levels, and caspase activities as well as apoptosis-regulatory proteins (Bcl-2 and Bcl-XL) were measured in MDA-MB-231 cells. Further, the antimetastatic potential of AVME was evaluated by invasion assay. AVME exhibited cytotoxic effects in all tested tumor cell lines and induced a significant increase in the percentage of MDA-MB-231 cells at G2/M and S phases of the cell cycle in a concentration-dependent manner. AVME also induced apoptosis in MDA-MB-231 cells, which was accompanied by the activation of caspase-3 and caspase-9 and downregulation of Bcl-2 and Bcl-XL proteins. Moreover, AVME suppressed cancer cell invasion by the inhibition of the metalloproteinase-9 activity. Findings from this study suggest that AVME has anti-breast cancer activities expressed through mitochondrial proapoptotic pathway including impairment of aggressive behaviors of breast cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396086PMC
http://dx.doi.org/10.1155/2020/6454853DOI Listing

Publication Analysis

Top Keywords

mda-mb-231 cells
12
abyssinone v-4'
8
v-4' methyl
8
methyl ether
8
cytotoxic effects
8
breast cancer
8
cancer cells
8
cell lines
8
cell cycle
8
bcl-2 bcl-xl
8

Similar Publications

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.

View Article and Find Full Text PDF

Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.

View Article and Find Full Text PDF

Small molecules that can bind to specific cells have broad applications in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!