The 2D semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility, and wide tunability of its band gap energy achieved by varying the layer thickness. All these features make 2D InSe a potential candidate for advanced electronic and optoelectronic applications. Here, the discovery of new polymorphs of InSe with enhanced electronic properties is reported. Using a global structure search that combines artificial swarm intelligence with first-principles energetic calculations, polymorphs that consist of a centrosymmetric monolayer belonging to the point group are identified, distinct from well-known polymorphs based on the monolayers that lack inversion symmetry. The new polymorphs are thermodynamically and kinetically stable, and exhibit a wider optical spectral response and larger electron mobilities compared to the known polymorphs. Opportunities to synthesize these newly discovered polymorphs and viable routes to identify them by X-ray diffraction, Raman spectroscopy, and second harmonic generation experiments are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405953PMC
http://dx.doi.org/10.1002/adfm.202001920DOI Listing

Publication Analysis

Top Keywords

indium selenide
8
enhanced electronic
8
electronic properties
8
polymorphs
7
polymorphs indium
4
selenide enhanced
4
electronic
4
properties semiconductor
4
semiconductor indium
4
selenide inse
4

Similar Publications

Phosphorus Oxidation Controls Epitaxial Shell Growth in InP/ZnSe Quantum Dots.

ACS Nano

January 2025

Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.

View Article and Find Full Text PDF

The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.

View Article and Find Full Text PDF

Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.

View Article and Find Full Text PDF

This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of  ~ 8%-20% in simulating rack mounted setup and integrated PV systems.

View Article and Find Full Text PDF

van der Waals (vdW) indium selenide (InSe) is receiving attention for its exceptional electron mobility and moderate band gap, enabling various applications. However, the intrinsic -type behavior of InSe has restricted its use predominantly to -type devices, constraining its application in complementary integrated microsystems. Here, we show superior ambipolar InSe transistors with vdW bottom contacts, achieving impressive -type on/off current ratios greater than 10 and Schottky barrier heights approaching the ideal Schottky-Mott limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!