G-quadruplex DNA plays a very important role in clinical diagnosis and fluorescence analysis has attracted extensive attention. A class of carbazole-based fluorescent probes for the detection of G-quadruplex DNA was established in this work. In this system, the installation of an oligo(ethylene glycol) chain on the scaffold will improve the water-solubility and biocompatibility. The presence of styrene-like different side groups could tune the selectivity toward G-quadruplex DNA binding. Results revealed that the substitution pattern and position gave a great influence on the ability for the discrimination of the G-quadruplex from other DNA structures. Especially, probe E1 bound to G-quadruplex DNA with superior selectivity, which exhibiting almost no fluorescence response in the presence of non-G-quadruplex DNA structures. Comprehensive analyses revealed that E1 could bind both ends of the G-quadruplex, resulting in a significant increase of fluorescence emission intensity. Cellular uptake assay suggested that E1 could pass through membrane and enter living cells with low cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2020.115641 | DOI Listing |
ACS Sens
January 2025
Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Biophysics, Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA.
The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Emergency Medicine, Stanford University, 240 Pasteur Drive Rm 0300 Stanford, CA 94305, USA.
The mechanisms of bacterial killing by neutrophil extracellular traps (NETs) are unclear. DNA, the largest component of NETs was believed to merely be a scaffold with antimicrobial activity only through the charge of the backbone. Here, we demonstrate for the first time that NETs DNA is beyond a mere scaffold to trap bacteria and it produces hydroxyl free radicals through the spatially concentrated G-quadruplex/hemin DNAzyme complexes, driving bactericidal effects.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!