The design of a novel near-infrared fluorescent HDAC inhibitor and image of tumor cells.

Bioorg Med Chem

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China. Electronic address:

Published: September 2020

Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC values of 9.20 ± 0.96 μM on Hela cells and 5.91 ± 0.57 μM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2020.115639DOI Listing

Publication Analysis

Top Keywords

near-infrared fluorescent
8
fluorescent hdac
8
hdac inhibitor
8
tumor cells
8
hdac inhibitors
8
hdac
5
design novel
4
novel near-infrared
4
inhibitor image
4
image tumor
4

Similar Publications

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

Background: Gastric cancer poses a major diagnostic and therapeutic challenge. Improved visualization of tumor margins and lymph node metastases with tumor-specific fluorescent markers could improve outcomes.

Methods: To establish orthotopic models of gastric cancer, one million cells of the human gastric cancer cell line, MKN45, were suspended in 50 μl of equal parts PBS and Matrigel and injected into the nude mouse stomach with a 29-gauge needle.

View Article and Find Full Text PDF

Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy.

J Med Chem

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.

View Article and Find Full Text PDF

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!