A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bamboo Tar as a Novel Fungicide: Its Chemical Components, Laboratory Evaluation, and Field Efficacy Against False Smut and Sheath Blight of Rice and Powdery Mildew and Fusarium Wilt of Cucumber. | LitMetric

The application of agricultural and forest residues can benefit the environment and the economy; however, they also generate a large amount of byproducts. In this study, bamboo tar (BT), a waste product of bamboo charcoal production, was dissolved in natural ethanol and the surfactant alkyl glucoside to manufacture a 50% (wt/wt) BT emulsifiable concentrate (BTEC) biopesticide. BTEC was screened for fungicidal activity against pathogens. The greatest activity was seen against with a half-maximal effective concentration (EC) value of 6 mg/liter. Four phytopathogenic fungi, , , , and , showed EC values of <60 mg/liter. Greenhouse tests in vivo showed 2,000 mg/liter BTEC had a 78.4% protective effect against , and replicated treatments had an 80.6% protective effect. In addition, replicated 2-year field trials were conducted in two geographic locations with four plant diseases: false smut (), rice sheath blight ( [Frank] Donk), cucumber powdery mildew (), and cucumber Fusarium wilt (). Results showed that 1,000 to 2,000 mg/liter BTEC significantly inhibited these diseases. Gas chromatography-mass spectrometry analysis showed that the total phenolic mass fractions of two BT samples were 45.39 and 48.26%. Eleven components were detected, and their percentage content was as follows (from high to low): 2,6-dimethoxyphenol > 2- or 4-ethylphenol > 2- or 4-methylphenol > phenol > 4-ethylguaiacol > dimethoxyphenol > 4-methylguaiacol > 4-propenyl-2,6-dimethoxyphenol > 2,4-dimethylphenol. Some of the phenolic compounds identified from the tar might be fungicidally active components. BT is a biochar waste, which has potential as a biofungicide and has promise in organic agriculture. The value of this tar may not be because of any fundamental physical differences from other synthetic fungicides but rather caused by reduced production expenses and more efficient use of waste products.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-06-20-1157-REDOI Listing

Publication Analysis

Top Keywords

bamboo tar
8
tar novel
4
novel fungicide
4
fungicide chemical
4
chemical components
4
components laboratory
4
laboratory evaluation
4
evaluation field
4
field efficacy
4
efficacy false
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!