Our recent study showed a high rate of HBsAg seroconversion in inactive HBsAg carriers (IHCs) treated with pegylated IFN (PEG-IFN). To understand the immune-mediated component of the HBsAg seroconversion better, this study investigated the role of NK cells. A total of 44 IHCs were given 48 wk of PEG-IFN. Fifteen cases achieved HBsAg seroconversion (R group), whereas 29 failed (NR group). The proportion and activity (CD107α and IFN-γ production) of NK cells were measured before and during treatment. We found that the proportion of NK cells in the R group was higher than in the NR group at baseline and during PEG-IFN treatment, even when patients were matched for age, sex and treatment period. IFN- γ secretion and CD107α expression from NK cells in cases who achieved HBsAg seroconversion were significantly higher than patients matched for age, sex, HBsAg and treatment period in the NR group at baseline and during PEG-IFN treatment. We also found that in HBsAg seroconversion cases, NK cells activity increased after PEG-IFN treatment, especially before HBsAg seroconversion. These effects were not found in non-responders. In conclusion, we demonstrated that the increase of NK cells accompanied by enhanced activity during PEG-IFN treatment favoured HBsAg seroconversion for IHC, and that NK cells may play a role in HBV seroconversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556194 | PMC |
http://dx.doi.org/10.1177/1753425920942580 | DOI Listing |
J Gastroenterol
January 2025
Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatitis B virus (HBV) RNA is an important serum biomarker of hepatic covalently closed circular DNA (cccDNA) transcriptional activity; however, its clinical characteristics remain unclear. This study evaluated the clinical utility of HBV RNA levels in patients with chronic hepatitis B (CHB).
Methods: We studied 87 CHB patients with serum HBV DNA levels ≥ 5.
World J Gastroenterol
January 2025
Institute of Hepatology and Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
Background: C-X-C chemokine receptor type 5 (CXCR5)CD8 T cells represent a unique immune subset with dual roles, functioning as cytotoxic cells in persistent viral infections while promoting B cell responses. Despite their importance, the specific role of CXCR5CD8 T cells in chronic hepatitis B (CHB), particularly during interferon-alpha (IFN-α) treatment, is not fully understood. This study aims to elucidate the relationship between CXCR5CD8 T cells and sustained serologic response (SR) in patients undergoing 48 weeks of pegylated IFN-α (peg-IFN-α) treatment for CHB.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Academy of Preventive Medicine, Shandong University, Jinan, China.
Acute hepatitis E infection could induce severe outcomes among chronic hepatitis B (CHB) patients. Between 2016 and 2017, an open-label study was conducted to evaluate the immunogenicity and safety of hepatitis E vaccine (HepE) in CHB patients, using healthy adults as parallel controls in China. Eligible participants who were aged ≥30 y were enrolled in the study.
View Article and Find Full Text PDFVaccine
January 2025
Zhengding County Center for Disease Control and Prevention, Shijiazhuang 050800, China. Electronic address:
To evaluate the long-term efficacy and anamnestic response of Chinese hamster ovary (CHO) cell-derived hepatitis B vaccine (CHO-HepB) after 18-20 years, a cross-sectional survey was conducted in seven communities in Zhengding County at the end of 2017. The birth cohort 1997-1999 vaccinated primarily with three doses of CHO-HepB were enrolled in the survey. The HBV serological markers were quantified using the Chemiluminescence method.
View Article and Find Full Text PDFN Engl J Med
December 2024
From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).
Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.
Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!