Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals.

Philos Trans R Soc Lond B Biol Sci

Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Published: September 2020

In many animal hosts, microbial symbionts are housed within specialized structures known as symbiotic organs, but the evolutionary origins of these structures have rarely been investigated. Here, I adopt an evolutionary developmental (evo-devo) approach, specifically to apply knowledge of the development of symbiotic organs to gain insights into their evolutionary origins and diversification. In particular, host genetic changes associated with evolution of symbiotic organs can be inferred from studies to identify the host genes that orchestrate the development of symbiotic organs, recognizing that microbial products may also play a key role in triggering the developmental programme in some associations. These studies may also reveal whether higher animal taxonomic groups (order, class, phylum, etc.) possess a common genetic regulatory network for symbiosis that is latent in taxa lacking symbiotic organs, and activated at the origination of symbiosis in different host lineages. In this way, apparent instances of convergent evolution of symbiotic organs may be homologous in terms of a common genetic blueprint for symbiosis. Advances in genetic technologies, including reverse genetic tools and genome editing, will facilitate the application of evo-devo approaches to investigate the evolution of symbiotic organs in animals. This article is part of the theme issue 'The role of the microbiome in host evolution'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435165PMC
http://dx.doi.org/10.1098/rstb.2019.0603DOI Listing

Publication Analysis

Top Keywords

symbiotic organs
32
evolutionary origins
12
evolution symbiotic
12
microbial symbionts
8
origins diversification
8
symbiotic
8
organs
8
organs animals
8
development symbiotic
8
common genetic
8

Similar Publications

Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation.

Appl Environ Microbiol

January 2025

Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.

Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.

View Article and Find Full Text PDF

Effects of the Symbiotic on the Host Ciliate Phenotypes.

Microorganisms

December 2024

Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Yamaguchi, Japan.

, a ciliated protist, forms a symbiotic relationship with the green alga . This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside in specialized compartments called perialgal vacuoles (PVs) within the host cytoplasm, which protect them from digestion by host lysosomal fusion.

View Article and Find Full Text PDF

Insights into the Biotic Factors Shaping Ectomycorrhizal Associations.

Biology (Basel)

December 2024

Lumbricidae, Improving Soil Productivity and Environment Unit (LAPSE), Higher Normal School (ENS), Mohammed V University in Rabat, Rabat P.O. Box 554, Morocco.

Ectomycorrhizal (EM) associations are essential symbiotic relationships that contribute significantly to the health and functioning of forest ecosystems. This review examines the biotic factors that influence EM associations, focusing on plant and fungal diversity, host specificity, and microbial interactions. Firstly, the diversity of host plants and ectomycorrhizal fungi (EMF) is discussed, highlighting how the richness of these organisms affects the formation and success of EM symbioses.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!