Context: Crosstalk through receptor ligand interactions at the maternal-fetal interface is impacted by fetal sex. This affects placentation in the first trimester and differences in outcomes. Sexually dimorphic signaling at early stages of placentation are not defined.

Objective: Investigate the impact of fetal sex on maternal-fetal crosstalk.

Design: Receptors/ligands at the maternal-fetal surface were identified from sexually dimorphic genes between fetal sexes in the first trimester placenta and defined in each cell type using single-cell RNA-Sequencing (scRNA-Seq).

Setting: Academic institution.

Samples: Late first trimester (~10-13 weeks) placenta (fetal) and decidua (maternal) from uncomplicated ongoing pregnancies.

Main Outcome Measures: Transcriptomic profiling at tissue and single-cell level; immunohistochemistry of select proteins.

Results: We identified 91 sexually dimorphic receptor-ligand pairs across the maternal-fetal interface. We examined fetal sex differences in 5 major cell types (trophoblasts, stromal cells, Hofbauer cells, antigen-presenting cells, and endothelial cells). Ligands from the CC family chemokine ligand (CCL) family were most highly representative in females, with their receptors present on the maternal surface. Sexually dimorphic trophoblast transcripts, Mucin-15 (MUC15) and notum, palmitoleoyl-protein carboxylesterase (NOTUM) were also most highly expressed in syncytiotrophoblasts and extra-villous trophoblasts respectively. Gene Ontology (GO) analysis using sexually dimorphic genes in individual cell types identified cytokine mediated signaling pathways to be most representative in female trophoblasts. Upstream analysis demonstrated TGFB1 and estradiol to affect all cell types, but dihydrotestosterone, produced by the male fetus, was an upstream regulator most significant for the trophoblast population.

Conclusions: Maternal-fetal crosstalk exhibits sexual dimorphism during placentation early in gestation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571453PMC
http://dx.doi.org/10.1210/clinem/dgaa503DOI Listing

Publication Analysis

Top Keywords

sexually dimorphic
24
maternal-fetal interface
12
fetal sex
12
cell types
12
identified sexually
8
dimorphic genes
8
sexually
6
maternal-fetal
6
fetal
5
dimorphic
5

Similar Publications

Sex-dependent adaptations in heart mitochondria from transgenic mice overexpressing cytochrome b reductase-3.

Mitochondrion

January 2025

Departamento de Biología Celular Fisiología e Inmunología Universidad de Córdoba Campus de Excelencia Internacional Agroalimentario ceiA3 Córdoba Spain. Electronic address:

Cytochrome b reductase 3 (CYB5R3) overexpression upregulates mitochondrial biogenesis, function, and abundance in skeletal muscle and kidneys, and mimics some of the salutary effects of calorie restriction, with the most striking effects being observed in females. We aimed to investigate the mitochondrial adaptations prompted by CYB5R3 overexpression in the heart, an organ surprisingly overlooked in studies focused on this long-lived transgenic model despite the critical role played by CYB5R3 in supporting cardiomyocytes mitochondrial respiration. Given that CYB5R3 effects have been found to be sex-dependent, we focused our research on both males and females.

View Article and Find Full Text PDF

Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis.

Cell Rep

January 2025

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.

View Article and Find Full Text PDF

Dental Anomalies and Cranio-Dental Ontogeny in a Captive Wild Boar Population From France.

J Morphol

January 2025

Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), UMR CNRS 7209, Muséum National d'Histoire Naturelle, Paris, France.

Dental anomalies are frequent in boars and pigs, and they generally affect the first premolar loci. The prevalence of these dental anomalies was investigated in a large number of populations around the world. These studies mainly focused on the influence of domestication, size, sexual dimorphism or food hardness on these anomalies.

View Article and Find Full Text PDF

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!