An in-silico approach to study the possible interactions of miRNA between human and SARS-CoV2.

Comput Biol Chem

Department of Medical Microbiology, Indian Council of Medical Research, Regional Medical Research Centre, Post Bag No-13, Port Blair, Andaman and Nicobar Islands, 744101, India.

Published: October 2020

Background: The progressive SARS-CoV2 outbreaks worldwide have evoked global investigation. Despite the numerousin-silico approaches, the virus-host relationship remains a serious concern. MicroRNAs are the small non-coding RNAs that help in regulating gene profiling. The current study utilized miRNA prediction tools along with the PANTHER classification system to demonstrate association and sequence similarities shared between miRNAs of SARS-CoV2 and human host.

Method: An in-silico approach was carried out using Vmir analyzer to predict miRNAs from SARS-CoV2 viral genomes. Predicted miRNAs from SARS-CoV2 viral genomes were used for effective hybridization sequence identification along the nucleotide similarities with human miRNAs from miRbase database. Further, it was proceeded to analyze the gene ontology using miRDB with PANTHER classification.

Result: Based on the prediction and analysis, we have identified 22 potential miRNAs from five genomes of SARS-CoV2 linked with 12 human miRNAs. Analysis of human miRNAs hsa-mir-1267, hsa-mir-1-3p, hsa-mir-5683 were found shared between all the five viral SARS-CoV2 miRNAs. Further, PANTHER classification analyzed the gene-ontology being carried by these associations showed that 44 genes were involved in biological functions that includes genes specific for signaling pathway, immune complex generation, enzyme binding with effective role in the virus-host relationship.

Conclusion: Our analysis concludes that the genes identified in this study can be effective in analyzing the virus-host interaction. It also provides a new direction to understand viral pathogenesis with a probable new way to link, that can be used to understand and relate the miRNAs of the virus to the host conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395633PMC
http://dx.doi.org/10.1016/j.compbiolchem.2020.107352DOI Listing

Publication Analysis

Top Keywords

mirnas sars-cov2
12
human mirnas
12
mirnas
9
in-silico approach
8
panther classification
8
sars-cov2 viral
8
viral genomes
8
sars-cov2
7
human
5
approach study
4

Similar Publications

Background: The SARS-CoV-2 virus's frequent mutations have made disease control with vaccines and antiviral drugs difficult; as a result, there is a need for more effective coronavirus drugs. Therefore, detecting the expression of various diagnostic biomarkers, including ncRNA in SARS-CoV2, implies new therapeutic strategies for the disease.

Aim: Our study aimed to measure NEAT-1, miR-374b-5p, and IL6 in the serum of COVID-19 patients, demonstrating the correlation between target genes to explore the possible relationship between them.

View Article and Find Full Text PDF

Viral RNA and miRNAs released by immune cells contribute to inflammation in COVID-19 patients. Here, we investigated the role of SARS-CoV2 RNA and host miRNAs carried within extracellular vesicles (EVs) in modulating inflammation. EVs were classified as positive or negative depending on their viral RNA cargo.

View Article and Find Full Text PDF

Background: One of the regulators in severe acute respiratory syndrome coronavirus2 (SARS-CoV2) infection is miRNAs. In COVID-19 patients, immunological responses to SARS-CoV2 infection may be impacted by miR-155, a miRNA associated to inflammation.

Materials And Methods: Peripheral blood mononuclear cells (PBMCs) of 50 confirmed COVID-19 patients /Healthy Controls (HCs) was isolated by Ficoll.

View Article and Find Full Text PDF

COVID-19 can induce lung inflammation, and inflammatory factors play an essential role in its pathogenesis. This inflammation can be controlled to a great extent by microRNAs(miRs). This study evaluated miR-146a-5p expression levels in the serum of patients with COVID-19 and their association with the expression of interleukin (IL)-18 and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes, and lung damage.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is triggered by a variety of insults, including bacterial and viral infections, and this leads to high mortality. While the role of the aryl hydrocarbon receptor (AhR) in mucosal immunity is being increasingly recognized, its function during ARDS is unclear. In the current study, we investigated the role of AhR in LPS-induced ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!