Twenty-four novel organometallic osmium(II) phenylazopyridine (AZPY) complexes have been synthesised and characterised; [Os(η-arene)(5-RO-AZPY)X]Y, where arene = p-cym or bip, AZPY is functionalized with an alkoxyl (O-R, R = Me, Et, Pr, Pr, Bu) or glycolic (O-{CHCHO}R*, n = 1-4, R* = H, Me, or Et) substituent on the pyridyl ring para to the azo-bond, X is a monodentate halido ligand (Cl, Br or I), and Y is a counter-anion (PF, CFSO or IO). X-ray crystal structures of two complexes confirmed their 'half-sandwich' structures. Aqueous solubility depended on X, the AZPY substituents, arene, and Y. Iodido complexes are highly stable in water (X = I ⋙ Br > Cl), and exhibit the highest antiproliferative activity against A2780 (ovarian), MCF-7 (breast), SUNE1 (nasopharyngeal), and OE19 (oesophageal) cancer cells, some attaining nanomolar potency and good cancer-cell selectivity. Their activity and distinctive mechanism of action is discussed in relation to hydrophobicity (RP-HPLC capacity factor and Log P), cellular accumulation, electrochemical reduction (activation of azo bond), cell cycle analysis, apoptosis and induction of reactive oxygen species (ROS). Two complexes show ca. 4× higher activity than cisplatin in the National Cancer Institute (NCI) 60-cell line five-dose screen. The COMPARE algorithm of their datasets reveals a strong correlation with one another, as well as anticancer agents olivomycin, phyllanthoside, bouvardin and gamitrinib, but only a weak correlation with cisplatin, indicative of a different mechanism of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2020.111154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!