Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal-organic frameworks (MOFs)/semiconductor hybrids have attracted attention in photocatalysis. Herein, we report a new strategy to use thiol-laced UiO-66 (UiO-66-(SH)) as a porous and functional support for anchoring CdS quantum dots (QDs) (size: 0.5/3 nm). Cd ions are firstly absorbed into the cavities of UiO-66-(SH) MOFs via coordinating to the thiol groups in the presence of a base to produce UiO-66-(S-Cd), then thiourea is added to form UiO-66-(S-CdS) (abbreviated as UiOS-CdS). It is clearly revealed by ultrafast transient absorption spectroscopy that the thio linkage between UiO-66 and CdS acts as an effective transfer bridge of charge carriers, which greatly promotes the interface transfer process of photogenerated electrons and holes, boosting the photocatalytic hydrogen production performance from water splitting. The optimized UiOS-CdS exhibits a photocatalytic H production rate of 153.2 μmol h (10 mg of catalyst) under visible-light irradiation (λ > 420 nm) in the absence of nobel metal co-catalyst, corrsponding to an apparent quantum efficiency of 11.9% at 420 nm. This work may provide an effective strategy to construct QDs-linker-MOFs stylephotocatalysts for efficient energy conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.07.121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!