A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA. | LitMetric

Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA.

Chemosphere

Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.

Published: January 2021

Frequent drying and rewetting due to flooding/precipitation and drainage events in floodplains induces changes in biogeochemical conditions that may influence the effectiveness of in situ Hg stabilization using biochars as soil amendments. This study evaluated two selected biochars anaerobic digestate (DIG) and sulfurized hardwood (MOAK)) as potential amendment materials in moderately reduced floodplain soil under repeated drying and rewetting events using a modified humidity cell protocol. Enhanced release of filter-passing (0.45-μm) total Hg (THg) and MeHg was observed at early times. Elevated concentrations of 0.45-μm THg were associated with DOC and Mn in sediment control and biochar-amended systems. Elevated concentrations of MeHg were associated with Mn in the MOAK-amended system. Thereafter, decreases in 0.45-μm (up to 57%) and unfiltered THg (up to 93%) were observed. As wetting and drying events continued, decreases in pH and alkalinity as well as increases in SO (up to 796 mg L) and Ca (up to 215 mg L) were observed in the MOAK-amended systems with the microbial community shifted towards sulfur-oxidizing bacteria, indicating microbially-driven oxidation of MOAK. Although results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest polysulfur is the predominant S phase in both MOAK- and DIG-amended systems, microbially-driven oxidation of DIG was not observed. Polysulfur in MOAK from the sulfurization process is more bioavailable to sulfur oxidizing communities than in DIG under the repeated drying and wetting conditions. Results of this study suggest biogeochemical conditions as well as biochar properties should be considered when planning full-scale field applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127794DOI Listing

Publication Analysis

Top Keywords

drying rewetting
12
rewetting events
8
floodplain soil
8
biogeochemical conditions
8
repeated drying
8
elevated concentrations
8
microbially-driven oxidation
8
drying
5
impact multiple
4
multiple drying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!