Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malaria prevails in subtropical countries where health monitoring facilities are minimal. Time series prediction models are required to forecast malaria and minimize the effect of this disease on the population. This study proposes a novel scalable framework to predict the instances of malaria in selected geographical locations. Satellite data and clinical data, along with a long short-term memory (LSTM) classifier, were used to predict malaria abundances in the state of Telangana, India. The proposed model provided a 12 months seasonal pattern for selected regions in the state. Each region had different responses based on environmental factors. Analysis indicated that both environmental and clinical variables play an important role in malaria transmission. In conclusion, the Apache Spark-based LSTM presents an effective strategy to identify locations of endemic malaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2020.103859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!