A bimodular PKS platform that expands the biological design space.

Metab Eng

Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, United States; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; QB3 Institute, University of California-Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, United States; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, United States; Department of Bioengineering, University of California, Berkeley, CA, 94720, United States; Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970, Horsholm, Denmark; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China. Electronic address:

Published: September 2020

AI Article Synopsis

Article Abstract

Traditionally engineered to produce novel bioactive molecules, Type I modular polyketide synthases (PKSs) could be engineered as a new biosynthetic platform for the production of de novo fuels, commodity chemicals, and specialty chemicals. Previously, our investigations manipulated the first module of the lipomycin PKS to produce short chain ketones, 3-hydroxy acids, and saturated, branched carboxylic acids. Building upon this work, we have expanded to multi-modular systems by engineering the first two modules of lipomycin to generate unnatural polyketides as potential biofuels and specialty chemicals in Streptomyces albus. First, we produce 20.6 mg/L of the ethyl ketone, 4,6 dimethylheptanone through a reductive loop exchange in LipPKS1 and a ketoreductase knockouts in LipPKS2. We then show that an AT swap in LipPKS1 and a reductive loop exchange in LipPKS2 can produce the potential fragrance 3-isopropyl-6-methyltetrahydropyranone. Highlighting the challenge of maintaining product fidelity, in both bimodular systems we observed side products from premature hydrolysis in the engineered first module and stalled dehydration in reductive loop exchanges. Collectively, our work expands the biological design space and moves the field closer to the production of "designer" biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2020.07.001DOI Listing

Publication Analysis

Top Keywords

reductive loop
12
expands biological
8
biological design
8
design space
8
specialty chemicals
8
loop exchange
8
bimodular pks
4
pks platform
4
platform expands
4
space traditionally
4

Similar Publications

Objective: As an emerging technology, Android-based open-source closed-loop system also called Android Artificial Pancreas System (AAPS), has been increasingly validated by evidence for its effectiveness in improving glycaemic outcomes, positioning it as a crucial option for managing type 1 diabetes (T1D). However, there are still only a few studies examining the experiences of using AAPS, and relevant qualitative studies have not been conducted in Asia so far. This study aimed to explore the experiences and opinions of adult patients with T1D on the AAPS.

View Article and Find Full Text PDF

Counteracting Alzheimer's disease normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.

The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.

View Article and Find Full Text PDF

Evaluating Avacopan in the Treatment of ANCA-Associated Vasculitis: Design, Development and Positioning of Therapy.

Drug Des Devel Ther

January 2025

Center of Expertise for Lupus-, Vasculitis- and Complement-Mediated Systemic Diseases (Luvacs), Department of Internal Medicine - Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands.

Recently, avacopan has been approved for the treatment of ANCA-associated vasculitis (AAV). Avacopan is an inhibitor of the C5a-receptor, which plays an important role in chemotaxis and the amplification loop of inflammation in AAV. In the most recent, international guidelines avacopan is recommended as steroid-sparing agents for the management of AAV.

View Article and Find Full Text PDF

PathCrisp: an innovative molecular diagnostic tool for early detection of NDM-resistant infections.

Sci Rep

January 2025

CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.

Article Synopsis
  • The study focuses on developing a rapid and accurate molecular detection system, called the PathCrisp assay, to identify infections and antibiotic resistance directly from culture samples.
  • The PathCrisp assay uses a combination of loop-mediated isothermal amplification and CRISPR-based detection, showing high sensitivity and specificity, particularly in detecting the New Delhi metallo-beta-lactamase (NDM) gene in clinical samples.
  • This novel assay provides results in about 2 hours without the need for complex equipment or extensive DNA purification, aiming to improve antibiotic treatment decisions in various healthcare settings.
View Article and Find Full Text PDF

Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux.

Phytomedicine

January 2025

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:

Article Synopsis
  • This study investigates the effectiveness of sanguinarine, a natural compound, against oral squamous cell carcinoma (OSCC), aiming to understand its mechanism of action.
  • Through extensive screening of drug libraries, sanguinarine was identified as a potent inhibitor that disrupts lysosomal function and impairs autophagic clearance in OSCC cells.
  • The research highlights sanguinarine's interaction with pyruvate kinase M2 (PKM2), leading to the inhibition of crucial cellular processes that contribute to OSCC progression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!