Control of gene expression by epigenetic regulators is fundamental to tissue development and homeostasis. Loss-of-function (LOF) studies using siRNAs for epigenetic regulators require that RNA interference rapidly reduces the cellular levels of the corresponding mRNAs and/or proteins. The most abundant chromatin structural proteins (i.e., the core histones H2A, H2B, H3 and H4) have relatively long half-lives and do not turn over rapidly, although their mRNAs are labile. The question arises whether epigenetic regulatory enzymes (e.g., Ezh2) or proteins that interact with histones via selective modifications (e.g., Cbx1 to Cbx8, Brd4) are stable or unstable. Therefore, we performed classical α-amanitin and cycloheximide inhibition assays that block, respectively, mRNA transcription and protein translation in mouse MC3T3 osteoblasts, ATDC5 chondrocytes and C2C12 myoblasts. We find that mRNA levels of Cbx proteins and Ezh2 were significantly depleted after 24 hrs, while their corresponding proteins remained relatively stable. As positive control, the half-life of the labile cyclin D1 protein was found to be less than 1 hr. Our study suggests that histone code readers and writers are relatively stable chromatin-related proteins, which is consistent with their long-term activities in maintaining chromatin organization and phenotype identity. These findings have conceptual ramifications for the interpretation of RNAi experiments that reduce the mRNA but not protein levels of epiregulatory proteins. We propose that siRNAs for at least some epigenetic regulatory proteins may exert their biological effects by blocking translation and new protein synthesis rather than by decreasing pre-existing protein pools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2020.145032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!