Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chirality detection of gas-phase molecules at low concentrations is challenging as the molecular number density is usually too low to perform conventional circular dichroism absorption experiments. In recent years, new spectroscopic methods have been developed to detect chirality in the gas phase. In particular, the angular distribution of photoelectrons after multiphoton laser ionization of chiral molecules using circularly polarized light is highly sensitive to the enantiomeric form of the ionized molecule [multiphoton photoelectron circular dichroism (MP-PECD)]. In this paper, we employ the MP-PECD as an analytic tool for chirality detection of the bicyclic monoterpene fenchone desorbing from a Ag(111) crystal. We record velocity-resolved kinetics of fenchone desorption on Ag(111) using pulsed molecular beams with ion imaging techniques. In addition, we measure temperature-programmed desorption spectra of the same system. Both experiments indicate weak physisorption of fenchone on Ag(111). We combine both experimental techniques with enantiomer-specific detection by recording MP-PECD of desorbing molecules using photoelectron imaging spectroscopy. We can clearly assign the enantiomeric form of the desorption product fenchone in sub-monolayer concentration. The experiment demonstrates the combination of MP-PECD with surface science experiments, paving the way for enantiomer-specific detection of surface reaction products on heterogeneous catalysts for asymmetric synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0014917 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!