Background: Wilson disease is an autosomal recessive metabolic disorder resulting from accumulation of excess copper especially in the liver and brain. This disease is mainly characterized by hepatic disorders and less frequently by neuro-psychiatric disturbances. This recessive disease is due to mutation in ATP7B, which codes for an ATPase involved in copper-transport across the plasma membrane. Molecular diagnosis of WD is positive in approximately 98% of cases. Also, in few cases, WD patients present a single deleterious mutation (heterozygous) or no mutation after sanger and NGS standard sequencing analysis of ATP7B. Therefore, in these problematic WD cases, we hypothesized that deleterious mutations reside in intronic regions of ATP7B.
Methods: Complete ATP7B gene was sequenced by Next Generation Sequencing including its promoter.
Results: Five unrelated families with Wilson disease shared the same novel, deep intronic NG_008806.1 (ATP7B_v001):c.2866-1521G>A variant in ATP7B. Analysis of RNA transcripts from primary fibroblasts of one patient confirmed the deleterious impact of the intronic variant on splicing and its likely pathologic effect in this compound heterozygote.
Conclusion: This discovery of a novel intronic mutation in ATP7B has improved the molecular diagnosis of WD in the French patient cohort to greater than 98%. Thus, we recommend complete sequencing of ATP7B gene, including introns, as a molecular diagnostic approach in cases of clinically confirmed WD which lack pathogenic exon or promoter variants in one or both alleles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549599 | PMC |
http://dx.doi.org/10.1002/mgg3.1428 | DOI Listing |
J Affect Disord
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA. Electronic address:
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.
View Article and Find Full Text PDFKidney Int
January 2025
Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Veterans Affairs, Nashville, TN 37235. Electronic address:
Seizure
January 2025
Neurology department, Royal Brisbane and Women's Hospital, Brisbane, Australia.
Objectives: There have been conflicting reports about the frequency of neural autoantibodies in epilepsy cohorts, which is confounded by the lack of clear distinction of epilepsy from acute symptomatic seizures due to encephalitis. The aim of this study was to determine the frequency of neural autoantibodies in a well characterised population of refractory focal epilepsy of known and unknown cause.
Methods: Cases were recruited from epilepsy outpatient clinics at the Princess Alexandra, Mater, Royal Brisbane and Women's and Cairns Base Hospitals from 2021 - 2023.
Neurol Genet
February 2025
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.
View Article and Find Full Text PDFNeurodegener Dis Manag
January 2025
Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!