The human microbiome plays an important role in human health, from metabolism to immunity. In the last few decades, advances in synthetic biology have enabled scientists to design and engineer live microorganisms for therapeutic purposes. In this review, major strategies for manipulating the microbiome are outlined, which include three emerging areas with promising therapeutic applications: engineered commensal bacteria, synthetic microbial consortia, and targeted modulation by phages. Furthermore, the applications of engineered live biotherapeutics in treating a variety of human diseases, including pathogenic infections, metabolic disorders, inflammatory bowel disease, and colorectal cancer, are highlighted. Finally, an overview of the challenges and opportunities in the future development of engineered live biotherapeutics is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202000155 | DOI Listing |
PLoS One
January 2025
Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America.
Purpose: This study aims to explore the feasibility and performance of three-dimensional ultrasound (3DUS) imaging in ophthalmology using commercially available ultrasound probes adapted to a slit lamp.
Significance: Despite ultrasound's long-standing application in eye care for visualizing ocular components, the evolution of 3DUS technology has remained inactive, with limited development and commercial availability. This study introduces a novel method that could potentially enhance ophthalmic diagnostics and treatment planning by providing comprehensive 3D views of ocular structures using existing ultrasound probes adapted to the conventional slit lamp.
Front Bioeng Biotechnol
January 2025
Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Introduction: Diabetes mellitus often leads to bone metabolism disorders, hindering bone regeneration and delaying the healing of bone defects. β-Ecdysone, a plant-derived hormone known for its wide range of physiological activities, possesses hypoglycemic effects and promotes osteogenic differentiation. This study developed a composite PLGA slow-release scaffold loaded with β-ecdysone to enhance its bioavailability through topical administration and to investigate its potential to heal diabetic bone defects.
View Article and Find Full Text PDFHeliyon
January 2025
University of Campinas, School of Food Engineering, 13056-405, Campinas, SP, Brazil.
The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.
View Article and Find Full Text PDFLife Med
December 2024
Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Microelectronics, Jiangsu University Zhenjiang Jiangsu 212013 China
Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!