In the last two decades, a large number of self-assembled materials were synthesized and they have already found their way into large-scale industry and science. Hydrogen-bond-based supramolecular adducts are found to have unique properties and to be perfect host structures for trapping target molecules or ions. Such chemical systems are believed to resemble living matter and can substitute a living cell in a number of cases. Herein, a report on an organic material based on supramolecular assembly of barbituric acid and melamine is presented. Surprisingly, the structure is found to host and stabilize radicals under mild conditions allowing its use for biological applications. The number of free radicals is found to be easily tuned by changing the pH of the environment and it increases when exposed to light up to a saturation level. We describe a preparation method as well as stability properties of melamine-barbiturate self-assembly, potentiometric titration, and hydrogen ions adsorption data and EPR spectra concerning the composite.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202002947DOI Listing

Publication Analysis

Top Keywords

supramolecular assembly
8
melamine-barbiturate supramolecular
4
assembly ph-dependent
4
ph-dependent organic
4
organic radical
4
radical trap
4
trap material
4
material decades
4
decades large
4
large number
4

Similar Publications

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.

View Article and Find Full Text PDF

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!