A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (FeO@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of FeO@Au nanoparticles (FeO@Au NPs). Among them, FeO@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL and the limit of detection was 0.4 pg mL. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-04457-7DOI Listing

Publication Analysis

Top Keywords

iii-assisted signal
8
signal amplification
8
determination carcinoembryonic
8
carcinoembryonic antigen
8
magnetic biocomposites
8
feo@au nps
8
exo iii
8
g-quadruplex/hemin complexes
8
cea
6
magnetic
5

Similar Publications

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

Detection of zearalenone by electrochemical aptasensor based on enzyme-assisted target recycling and DNAzyme release strategy.

Talanta

January 2025

College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China. Electronic address:

Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins.

View Article and Find Full Text PDF

Gold nanocube-enhanced SERS biosensor based on heated electrode coupled with exonuclease III-assisted cycle amplification for sensitive detection of flap endonuclease 1 activity.

Talanta

December 2024

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:

The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal.

View Article and Find Full Text PDF

Simple yet specific miRNA detection remains an enormous challenge due to its low abundance in samples and the high similarity among homologous miRNAs. Here, we propose a novel fluorescent approach for miRNA detection with greatly elevated accuracy by utilizing exonuclease-iii (Exo-iii) assisted twice target recognition. The proposed method involves a "Sensing probe" engineered with two loop sections to facilitate dual target miRNA recognition.

View Article and Find Full Text PDF

Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!