The development of methods to analyze data acquired using functional near-infrared spectroscopy (fNIRS) in experiments similar to real-life situations is of great value in modern applied neuroscience. One of the most used methods to analyze fNIRS signals consists of the application of the general linear model on the observed hemodynamic signals. However, it implies limitations on the experimental design that must be constrained by triggers related to the stimuli protocols (such as block design or event related). In this work, a novel methodology is proposed to overcome such restrictions and allow more flexible protocols. The method combines the intersubject correlation analysis and the multivariate distance matrix regression to evaluate the brain-behavior relationship of subjects submitted to experiments with no trigger-based protocols. Its applicability is demonstrated throughout a naturalistic experiment about emotions conveyed by music. Thirty-two participants freely listened to instrumental excerpts from the operatic repertoire and reported the valences of the emotions conveyed by the musical segments. The method was able to find a statistically significant correlation between the subjects' fNIRS signals and valences of their emotional responses, for the excerpt that evoked the most negative valence. This result illustrates the potential of this approach as an alternative method to analyze fNIRS signals from experiments in which block design or task-related paradigms might not be suitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-020-05895-8 | DOI Listing |
The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional Near Infra-red Spectroscopy (fNIRS). Classifying contralateral and ipsilateral motor movements is found challenging among the other mental activity signals.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Aerospace Medical Equipment, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
Backgrounds: Functional near-infrared spectroscopy (fNIRS) is widely used for the evaluation of mental workload (MWL), but it is not yet clear whether it is affected by physical factors during cognitive tasks. Therefore, the combined effects of physical and cognitive loads on hemodynamic features in the prefrontal cortex were evaluated.
Methods: Thirty-three eligible healthy male subjects were asked to perform three types of cognitive tasks (1-back, 2-back and 3-back).
Sensors (Basel)
December 2024
Division of Neurological Rehabilitiation, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Stroke is a global health issue caused by reduced blood flow to the brain, which leads to severe motor disabilities. Measuring oxygen levels in the brain tissue is crucial for understanding the severity and evolution of stroke. While CT or fMRI scans are preferred for confirming a stroke due to their high sensitivity, Near-Infrared Spectroscopy (NIRS)-based systems could be an alternative for monitoring stroke evolution.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.
View Article and Find Full Text PDFBrain Sci
November 2024
College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan 030600, China.
: Studies have shown that emotion recognition based on electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) multimodal physiological signals exhibits superior performance compared to that of unimodal approaches. Nonetheless, there remains a paucity of in-depth investigations analyzing the inherent relationship between EEG and fNIRS and constructing brain networks to improve the performance of emotion recognition. : In this study, we introduce an innovative method to construct hybrid brain networks in the source space based on simultaneous EEG-fNIRS signals for emotion recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!