Purpose: Due to the complex anatomical structure of bronchi and the resembling inner surfaces of airway lumina, bronchoscopic examinations require additional 3D navigational information to assist the physicians. A bronchoscopic navigation system provides the position of the endoscope in CT images with augmented anatomical information. To overcome the shortcomings of previous navigation systems, we propose using a technique known as visual simultaneous localization and mapping (SLAM) to improve bronchoscope tracking in navigation systems.

Methods: We propose an improved version of the visual SLAM algorithm and use it to estimate nt-specific bronchoscopic video as input. We improve the tracking procedure by adding more narrow criteria in feature matching to avoid mismatches. For validation, we collected several trials of bronchoscopic videos with a bronchoscope camera by exploring synthetic rubber bronchus phantoms. We simulated breath by adding periodic force to deform the phantom. We compared the camera positions from visual SLAM with the manually created ground truth of the camera pose. The number of successfully tracked frames was also compared between the original SLAM and the proposed method.

Results: We successfully tracked 29,559 frames at a speed of 80 ms per frame. This corresponds to 78.1% of all acquired frames. The average root mean square error for our technique was 3.02 mm, while that for the original was 3.61 mm.

Conclusion: We present a novel methodology using visual SLAM for bronchoscope tracking. Our experimental results showed that it is feasible to use visual SLAM for the estimation of the bronchoscope camera pose during bronchoscopic navigation. Our proposed method tracked more frames and showed higher accuracy than the original technique did. Future work will include combining the tracking results with virtual bronchoscopy and validation with in vivo cases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-020-02241-9DOI Listing

Publication Analysis

Top Keywords

visual slam
16
bronchoscope tracking
12
bronchoscopic navigation
12
bronchoscope camera
8
camera pose
8
tracked frames
8
visual
6
bronchoscopic
6
slam
6
bronchoscope
5

Similar Publications

High-voltage overhead power lines serve as the carrier of power transmission and are crucial to the stable operation of the power system. Therefore, it is particularly important to detect and remove foreign objects attached to transmission lines, as soon as possible. In this context, the widespread promotion and application of smart robots in the power industry can help address the increasingly complex challenges faced by the industry and ensure the efficient, economical, and safe operation of the power grid system.

View Article and Find Full Text PDF

ISFM-SLAM: dynamic visual SLAM with instance segmentation and feature matching.

Front Neurorobot

November 2024

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.

Introduction: Simultaneous Localization and Mapping (SLAM) is a technology used in intelligent systems such as robots and autonomous vehicles. Visual SLAM has become a more popular type of SLAM due to its acceptable cost and good scalability when applied in robot positioning, navigation and other functions. However, most of the visual SLAM algorithms assume a static environment, so when they are implemented in highly dynamic scenes, problems such as tracking failure and overlapped mapping are prone to occur.

View Article and Find Full Text PDF

Composite robots often encounter difficulties due to changes in illumination, external disturbances, reflective surface effects, and cumulative errors. These challenges significantly hinder their capabilities in environmental perception and the accuracy and reliability of pose estimation. We propose a nonlinear optimization approach to overcome these issues to develop an integrated localization and navigation framework, IIVL-LM (IMU, Infrared, Vision, and LiDAR Fusion for Localization and Mapping).

View Article and Find Full Text PDF

As mining technology advances, intelligent robots in open-pit mining require precise localization and digital maps. Nonetheless, significant pitch variations, uneven highways, and rocky surfaces with minimal texture present substantial challenges to the precision of feature extraction and positioning in traditional visual SLAM systems, owing to the intricate terrain features of open-pit mines. This study proposes an improved SLAM technique that integrates visual and Inertial Measurement Unit (IMU) data to address these challenges.

View Article and Find Full Text PDF

Simultaneous Localization And Mapping (SLAM) algorithms play a critical role in autonomous exploration tasks requiring mobile robots to autonomously explore and gather information in unknown or hazardous environments where human access may be difficult or dangerous. However, due to the resource-constrained nature of mobile robots, they are hindered from performing long-term and large-scale tasks. In this paper, we propose an efficient multi-robot dense SLAM system that utilizes a centralized structure to alleviate the computational and memory burdens on the agents (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!