The present work aims at validating a Bayesian multi-dipole modeling algorithm (SESAME) in the clinical scenario consisting of localizing the generators of single interictal epileptiform discharges from resting state magnetoencephalographic recordings. We use the results of Equivalent Current Dipole fitting, performed by an expert user, as a benchmark, and compare the results of SESAME with those of two widely used source localization methods, RAP-MUSIC and wMNE. In addition, we investigate the relation between post-surgical outcome and concordance of the surgical plan with the cerebral lobes singled out by the methods. Unlike dipole fitting, the tested algorithms do not rely on any subjective channel selection and thus contribute towards making source localization more unbiased and automatic. We show that the two dipolar methods, SESAME and RAP-MUSIC, generally agree with dipole fitting in terms of identified cerebral lobes and that the results of the former are closer to the fitted equivalent current dipoles than those of the latter. In addition, for all the tested methods and particularly for SESAME, concordance with surgical plan is a good predictor of seizure freedom while discordance is not a good predictor of poor post-surgical outcome. The results suggest that the dipolar methods, especially SESAME, represent a reliable and more objective alternative to manual dipole fitting for clinical applications in the field of epilepsy surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429532 | PMC |
http://dx.doi.org/10.1007/s10548-020-00789-y | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.
The minimal basis iterative Stockholder (MBIS) decomposition of molecular electron densities into atomic quantities is an attractive approach for deriving electrostatic parameters in force fields. The MBIS-derived atomic charges, however, in general tend to overestimate the molecular dipole and quadrupole moments by ∼10%. We show that it is possible to derive a constrained MBIS model where the atomic charges or a combination of atomic charges and dipoles exactly reproduce the molecular dipole and quadrupole moments for molecules.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland.
The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.
Electronic polarization and dispersion are decisive actors in determining interaction energies between molecules. These interactions have a particularly profound effect on excitation energies of molecules in complex environments, especially when the excitation involves a significant degree of charge reorganization. The direct reaction field (DRF) approach, which has seen a recent revival of interest, provides a powerful framework for describing these interactions in quantum mechanics/molecular mechanics (QM/MM) models of systems, where a small subsystem of interest is described using quantum chemical methods and the remainder is treated with a simple MM force field.
View Article and Find Full Text PDFMater Horiz
December 2024
Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
The development of multi-cation perovskite quantum dots (PQDs) is limited by the low availability of fitting A-site cations due to the unsuitable radii of a large gamut of amine cations. The impact of oversized or undersized cations on the perovskite structure is detrimental to the structural stabilization and electroluminescence efficiency of the PQDs. Researchers are actively seeking suitable-sized cations to mitigate perovskite defect formation and optimize charge carrier confinement within the PQDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!