A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells.

Sci Rep

Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany.

Published: August 2020

Although electroporation has been widely accepted as the main gene transfer tool, there is still considerable scope to improve the electroporation efficiency of exogenous DNAs into primary cells. Here, we developed a square-wave pulsing protocol using OptiMEM-GlutaMAX for highly efficient transfection of murine embryonic fibroblasts (MEF) and induced pluripotency stem (iPS) cells using reporter genes as well as gRNA/Cas9-encoding plasmids. An electrotransfection efficiency of > 95% was achieved for both MEF and iPS cells using reporter-encoding plasmids. The protocol was efficient for plasmid sizes ranging from 6.2 to 13.5 kb. Inducing the error prone non-homologous end joining repair by gRNA/Cas9 plasmid transfection, a high rate of targeted gene knockouts of up to 98% was produced in transgenic cells carrying a single-copy of Venus reporter. Targeted deletions in the Venus transgene were efficiently (up to 67% deletion rate) performed by co-electroporation of two gRNA-encoding plasmids. We introduced a plasmid electrotransfection protocol which is straight-forward, cost-effective, and efficient for CRISPRing murine primary cells. This protocol is promising to make targeted genetic engineering using the CRISPR/Cas9 plasmid system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414887PMC
http://dx.doi.org/10.1038/s41598-020-70258-wDOI Listing

Publication Analysis

Top Keywords

ips cells
12
electrotransfection protocol
8
murine embryonic
8
embryonic fibroblasts
8
primary cells
8
cells
6
protocol
5
versatile bulk
4
bulk electrotransfection
4
protocol murine
4

Similar Publications

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone.

Stem Cell Reports

January 2025

Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan. Electronic address:

Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation.

View Article and Find Full Text PDF

Generation of induced pluripotent stem cell line from a patient with long COVID.

Stem Cell Res

January 2025

Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Baszucki Family Vascular Surgery Biobank, USA; Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA, USA. Electronic address:

Long COVID, or post-acute sequelae of SARS-CoV-2 infection, leads to vascular dysfunction, which contributes to the chronic multi-organ damage often seen in affected patients. Long COVID, a global health concern is associated with increased thrombotic risk, also known as COVID-19-associated coagulopathy (CAC). Here, we derived an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of a long COVID patient.

View Article and Find Full Text PDF

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

Background: Rodent models have been widely used to investigate skin development, but do not account for significant differences in composition compared to human skin. On the other hand, two-dimensional and three-dimensional engineered skin models still lack the complex features of human skin such as appendages and pigmentation. Recently, hair follicle containing skin organoids (SKOs) with a stratified epidermis, and dermis layer have been generated as floating spheres from human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!