Microresonator solitons are critical to miniaturize optical frequency combs to chip scale and have the potential to revolutionize spectroscopy, metrology and timing. With the reduction of resonator diameter, high repetition rates up to 1 THz become possible, and they are advantageous to wavelength multiplexing, coherent sampling, and self-referencing. However, the detection of comb repetition rate, the precursor to all comb-based applications, becomes challenging at these repetition rates due to the limited bandwidth of photodiodes and electronics. Here, we report a dual-comb Vernier frequency division method to vastly reduce the required electrical bandwidth. Free-running 216 GHz "Vernier" solitons sample and divide the main soliton's repetition frequency from 197 GHz to 995 MHz through electrical processing of a pair of low frequency dual-comb beat notes. Our demonstration relaxes the instrumentation requirement for microcomb repetition rate detection, and could be applied for optical clocks, optical frequency division, and microwave photonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414884 | PMC |
http://dx.doi.org/10.1038/s41467-020-17843-9 | DOI Listing |
Sci Rep
December 2024
Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
To investigate for the risk of uveitis among such patients. A retrospective cohort study utilized the TriNetX database and recruited pediatric autoimmune patients diagnosed between January 1st 2004 and December 31st 2022. The non-autoimmune cohort were randomly selected control patients matched by sex, age, and index year.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFNat Commun
December 2024
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Quantum computers now encounter the significant challenge of scalability, similar to the issue that classical computing faced previously. Recent results in high-fidelity spin qubits manufactured with a Si CMOS technology, along with demonstrations that cryogenic CMOS-based control/readout electronics can be integrated into the same chip or die, opens up an opportunity to break out the challenges of qubit size, I/O, and integrability. However, the power consumption of cryogenic CMOS-based control/readout electronics cannot support thousands or millions of qubits.
View Article and Find Full Text PDFNutr Diabetes
December 2024
Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.
Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.
Neurogastroenterol Motil
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!