The incretin hormone glucose-dependent insulinotropic polypeptide (GIP), released postprandially from K-cells, has established actions on adipocytes and lipid metabolism. In addition, xenin, a related peptide hormone also secreted from K-cells after a meal, has postulated effects on energy regulation and lipid turnover. The current study has probed direct individual and combined effects of GIP and xenin on adipocyte function in 3T3-L1 adipocytes, using enzyme-resistant peptide analogues, (d-Ala2)GIP and xenin-25-Gln, and knockdown (KD) of receptors for both peptides. (d-Ala2)GIP stimulated adipocyte differentiation and lipid accumulation in 3T3-L1 adipocytes over 96 h, with xenin-25-Gln evoking similar effects. Combined treatment significantly countered these individual adipogenic effects. Individual receptor KD impaired lipid accumulation and adipocyte differentiation, with combined receptor KD preventing differentiation. (d-Ala2)GIP and xenin-25-Gln increased glycerol release from 3T3-L1 adipocytes, but this lipolytic effect was significantly less apparent with combined treatment. Key adipogenic and lipolytic genes were upregulated by (d-Ala2)GIP or xenin-25-Gln, but not by dual peptide culture. Similarly, both (d-Ala2)GIP and xenin-25-Gln stimulated insulin-induced glucose uptake in 3T3-L1 adipocytes, but this effect was annulled by dual treatment. In conclusion, GIP and xenin possess direct, comparable, lipogenic and lipolytic actions in 3T3-L1 adipocytes. However, effects on lipid metabolism are significantly diminished by combined administration.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2020-0195DOI Listing

Publication Analysis

Top Keywords

3t3-l1 adipocytes
24
d-ala2gip xenin-25-gln
16
gip xenin
12
individual combined
8
combined effects
8
effects gip
8
glucose uptake
8
lipid metabolism
8
adipocyte differentiation
8
lipid accumulation
8

Similar Publications

Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.

Plant Foods Hum Nutr

January 2025

Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.

Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity.

View Article and Find Full Text PDF

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades.

View Article and Find Full Text PDF

Supernatants from Newly Isolated P4 Ameliorate Adipocyte Metabolism in Differentiated 3T3-L1 Cells.

Biomedicines

December 2024

Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.

() strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated strains, M2.1 and P4, were yielded from anthills in Sinite Kamani National Park, Bulgaria.

View Article and Find Full Text PDF

Therapeutic Potential of Dimethyl Fumarate for the Treatment of High-Fat/High-Sucrose Diet-Induced Obesity.

Antioxidants (Basel)

December 2024

Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil.

Obesity is characterized by an imbalance between energy intake and expenditure that triggers abnormal growth of adipose tissues. Dimethyl fumarate (DMF) and its primary active metabolite, monomethyl fumarate (MMF), are Nrf2 activators and have been recognized as strategic antioxidants. This study aimed to evaluate the potential of MMF and DMF to interfere with adipogenesis and obesity, and identify the molecular mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!