Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated. Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642077 | PMC |
http://dx.doi.org/10.1128/AEM.01446-20 | DOI Listing |
Sci Rep
January 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.
View Article and Find Full Text PDFBMJ
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Physical Medicine and Rehabilitation. Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Approximately half of critically ill adults experience intensive care unit acquired weakness (ICUAW). Patients who develop ICUAW may have negative outcomes, including longer duration of mechanical ventilation, greater length of stay, and worse mobility, physical functioning, quality of life, and mortality. Early physical rehabilitation interventions have potential for improving ICUAW; however, randomized trials show inconsistent findings on the efficacy of these interventions.
View Article and Find Full Text PDFJ Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!