The study aimed to determine the phytohormone profile of sweet briar rose (Rosa rubiginosa L.) seedlings and privileged synthesis pathways of individual hormones including gibberellins, cytokinins and auxins in response to long-term soil drought. We detected eight gibberellins, nine auxins and fifteen cytokinins. Abscisic acid (ABA) was also detected as a sensitive indicator of water stress. Thirty days of soil drought induced significant increase of ABA content and species-specific quantitative changes of other phytohormones. We established preferred synthesis pathways for three gibberellins, six auxins and eight cytokinins. Both an increase and decrease in gibberellin and cytokinin levels may modulate sweet briar's response to soil water shortage. In the case of auxins, induction of effective adaptation mechanisms to extremely dry environments is mostly triggered by their rising levels. Under drought stress, sweet briar seedlings increased their gibberellin pool at the expense of reducing the pool of cytokinins and auxins. This may indicate a specific role of gibberellins in adaptation mechanisms to long-term soil water deficit developed by sweet briar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.06.018DOI Listing

Publication Analysis

Top Keywords

sweet briar
16
synthesis pathways
12
soil drought
12
briar rose
8
rose rosa
8
rosa rubiginosa
8
rubiginosa seedlings
8
cytokinins auxins
8
long-term soil
8
gibberellins auxins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!