Assembly of chitosan-graphite oxide nanoplatelets core shell microparticles for advanced 3D scaffolds supporting neuronal networks growth.

Colloids Surf B Biointerfaces

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università degli studi di Genova, Via All'Opera Pia 13, 16145, Genoa, Italy. Electronic address:

Published: December 2020

This manuscript reports the development of functional 3D scaffolds based on chitosan (CHI) and graphite oxide nanoplatelets (GO) for neuronal network growth. To this aim, CHI microparticles, produced by alkaline gelation method, were coated with GO exploiting a simple template-assisted assembly based on the electrostatic attraction in an aqueous medium. The optimal deposition conditions were evaluated by optical microscopy and studied by quartz crystal microbalance. FE-SEM observations highlight the formation of a core-shell structure where the porous chitosan core is completely wrapped by a uniform GO layer. This outer shell protects the inner chitosan from enzymatic degradation thus potentially extending the scaffold viability for in vivo applications. The presence of hydrophilic oxygen-containing functionalities on the outermost layer of GO and its inner conductive graphitic core maintained the bioactivity of the scaffold and promoted neuronal cell adhesion and growth. The proposed approach to modify the surface of CHI microparticles makes it possible for the design of 3D scaffolds for advanced neuronal tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111295DOI Listing

Publication Analysis

Top Keywords

oxide nanoplatelets
8
chi microparticles
8
assembly chitosan-graphite
4
chitosan-graphite oxide
4
nanoplatelets core
4
core shell
4
shell microparticles
4
microparticles advanced
4
advanced scaffolds
4
scaffolds supporting
4

Similar Publications

This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance.

View Article and Find Full Text PDF

High-performance and sustainable membranes for water desalination applications are crucial to address the growing global demand for clean water. Concurrently, electrospinning has emerged as a versatile manufacturing method for fabricating nanofibrous membranes for membrane distillation. However, widespread adoption of electrospinning for processing water-insoluble polymers, such as fluoropolymers, is hindered by the reliance on hazardous organic solvents during production.

View Article and Find Full Text PDF

Vanadium oxide-based compounds have attracted significant interest as battery materials, especially in aqueous Zn-ion batteries, due to favorable properties and compatibility in Zn-ion systems. In a simple hydrothermal method with moderate conditions, a novel vanadium oxide compound has been synthesized using ammonium metavanadate with oxalic acid as a reducing agent. Various characterization techniques confirmed the formation of layered VO(HO) nanoplatelets with a tetragonal crystal structure.

View Article and Find Full Text PDF

Water absorption properties of graphene nanoplatelets filled bamboo/kenaf reinforced polylactic acid hybrid composites.

Int J Biol Macromol

January 2025

Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.

Environmental issues have resulted in the forming of sustainable materials, including natural fiber-reinforced PLA composites; nonetheless, this composite has low water resistance, resulting in poor composite performance. This research aims to investigate the impact of adding a small amount of graphene nanoplatelets (GNP) on the water absorption (WA) characteristic of bamboo/kenaf-reinforced PLA hybrid composites. The physical behavior and water resistance of the composites, as well as the mechanical performance and surface after 14 days of immersion, were comprehensively investigated.

View Article and Find Full Text PDF

Cefixime-Infused Green ZnO Nanoplatelets With Enhanced Biological Potential.

Microsc Res Tech

November 2024

Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.

The escalating resistance to traditional antibiotics causes a significant hazard to public health, demanding innovative antimicrobial strategies. This study introduces cefixime-infused green-synthesized zinc oxide nanoplatelets (ZnO NPts) highlighting their enhanced biological potential. The successful formation of ZnO NPts and their subsequent infusion with cefixime were confirmed using various characterization techniques: UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and dynamic light scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!