The infections caused by Herpes simplex viruses (HSV-1 and -2) are seriously endangering the health of all human beings. Once infected with these two viruses, it will cause life-long latency in the host, and the continuous recurrence of the infection will seriously affect the quality of life. Moreover, infections with HSV-1 and HSV-2 have been reported to make the body susceptible to other diseases, such as Alzheimer's disease and HIV. Thus, more attention should be paid to the development of novel anti-HSV drugs. Polysaccharides obtained from medicinal plants and microorganism (both land and sea) are reported to be promising anti-herpes substances. However, their antiviral mechanisms are complex and diverse, which includes direct inhibition of virus life cycle (Adsorption, penetration, genetic material and protein synthesis) and indirectly through improving the body's immunity. And each step of the research processes from extraction to structural analysis contributes to the result in terms of antiviral activity. Therefore, The complex mechanisms involved in the treatment of Herpes simplex infections makes development of new antiviral compounds is difficult. In this paper, the mechanisms of polysaccharides in the treatment of Herpes simplex infections, the research processes of polysaccharides and their potential clinical applications were reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110469DOI Listing

Publication Analysis

Top Keywords

herpes simplex
12
polysaccharides medicinal
8
medicinal plants
8
treatment herpes
8
simplex infections
8
review natural
4
polysaccharides
4
natural polysaccharides
4
plants microorganisms
4
microorganisms anti-herpetic
4

Similar Publications

Public Health.

Alzheimers Dement

December 2024

MRC Unit for Lifelong Health & Ageing at UCL, London, United Kingdom.

Background: Associations of common infections with Alzheimer's disease have been reported, but potential mechanisms underlying these relationships are unclear. A hypothesised mechanism is amyloid-beta (Aβ) aggregation as a defense mechanism in response to infection, with subsequent tau accumulation. However, no studies have assessed associations of infections with cerebral Aβ and tau pathology in vivo.

View Article and Find Full Text PDF

Public Health.

Alzheimers Dement

December 2024

Tufts University, Medford, MA, USA.

Background: Hallmark features of AD are well defined, however, the generation of in vitro models of sporadic AD poses a significant challenge due to the complex, undefined etiology and slow progression of this disease. Herpes simplex virus type I (HSV-1) is a pathogen that is gaining increasing attention as a potential causative agent in AD pathogenesis. HSV-1 is a DNA virus that typically resides throughout the peripheral nervous system in a latent state.

View Article and Find Full Text PDF

Background: Chronically reactivating Herpes Simplex Virus Type 1 (HSV1) infection has been shown to produce key molecular and behavioral markers of Alzheimer's disease (AD). Most notably, the accumulation of neurotoxic tau isoforms, neurofibrillary tangles (NFTs), and Amyloid-beta plaques. Our study takes a unique approach to the systematic characterization of HSV1 biomarkers within the brain.

View Article and Find Full Text PDF

Fetal Tetra-Amelia Birth: A Case Report.

Case Rep Obstet Gynecol

December 2024

Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.

Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.

View Article and Find Full Text PDF

This study leverages and upgrades the capabilities of computer-aided retrosynthesis (CAR) in the systematic development of greener and more efficient total synthetic routes for the active pharmaceutical ingredient (API) IM-204, a helicase-primase inhibitor that demonstrated enhanced efficacy against Herpes simplex virus (HSV) infections. Using various CAR tools, several total synthetic routes were uncovered, evaluated, and experimentally validated, with the goal to maximize selectivity and yield and minimize the environmental impact. The CAR tools revealed several synthetic options under different constraints, which can overperform the patented synthetic route used as a reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!