Post-translational modifications, complex formation, subcellular localization, and cell-type-specific expression create functionally distinct protein subpopulations that enable living systems to execute rapid and precise responses to changing conditions. Systems-level analysis of these subproteomes remains challenging, requiring preservation of spatial information or enrichment of species that are transient and present at low abundance. Engineered proteins have emerged as important tools for selective proteomics based on their capacity for highly specific molecular recognition and their genetic targetability. Here, we focus on new developments in protein engineering for selective proteomics of post-translational modifications, protein complexes, subcellular compartments, and cell types. We also address remaining challenges and future opportunities to integrate engineered protein tools across different subproteome scales to map the proteome with unprecedented depth and detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2020.07.003 | DOI Listing |
J Proteome Res
January 2025
Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFThe expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.
View Article and Find Full Text PDFFront Immunol
January 2025
Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, China.
Introduction: Brucellosis is a widespread zoonotic disease that poses a considerable challenge to global public health. Existing diagnostic methods for this condition, such as serological assays and bacterial culture, encounter difficulties due to their limited specificity and high operational complexity. Therefore, there is an urgent need for the development of enhanced diagnostic approaches for brucellosis.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer.
View Article and Find Full Text PDFAnal Chem
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.
Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!