Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These heterogeneous structures are differentially involved in memory, cognitive and emotional functions, and present nonuniformly distributed atrophy contributing to cognitive disorders. This study aims to examine how genetics influences Alzheimer's disease (AD) pathogenesis via MTL substructures by analyzing high-resolution magnetic resonance imaging (MRI) data. We performed genome-wide association study to examine the associations between 565,373 single nucleotide polymorphisms (SNPs) and 14 MTL substructure volumes. A novel association with right Brodmann area 36 volume was discovered in an ERC1 SNP (i.e., rs2968869). Further analyses on larger samples found rs2968869 to be associated with gray matter density and glucose metabolism measures in the right hippocampus, and disease status. Tissue-specific transcriptomic analysis identified the minor allele of rs2968869 (rs2968869-C) to be associated with reduced ERC1 expression in the hippocampus. All the findings indicated a protective role of rs2968869-C in AD. We demonstrated the power of high-resolution MRI and the promise of fine-grained MTL substructures for revealing the genetic basis of AD biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609616 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2020.07.005 | DOI Listing |
Clin Radiol
December 2024
Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.
Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.
Bioengineering (Basel)
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.
As the leading cause of dementia worldwide, Alzheimer's Disease (AD) has prompted significant interest in developing Deep Learning (DL) approaches for its classification. However, it currently remains unclear whether these models rely on established biological indicators. This work compares a novel DL model using structural connectivity (namely, BC-GCN-SE adapted from functional connectivity tasks) with an established model using structural magnetic resonance imaging (MRI) scans (namely, ResNet18).
View Article and Find Full Text PDFNeuron
January 2025
Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Prefrontal cortex and medial temporal lobe information processing might not be that different after all. In this issue of Neuron, Whittington et al. show that prefrontal cortex working memory slot activity enables sequence memorizing similar to hippocampal long-term memory.
View Article and Find Full Text PDFCell Rep
January 2025
Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.
Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!