Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data.

Neurobiol Aging

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Published: November 2020

Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These heterogeneous structures are differentially involved in memory, cognitive and emotional functions, and present nonuniformly distributed atrophy contributing to cognitive disorders. This study aims to examine how genetics influences Alzheimer's disease (AD) pathogenesis via MTL substructures by analyzing high-resolution magnetic resonance imaging (MRI) data. We performed genome-wide association study to examine the associations between 565,373 single nucleotide polymorphisms (SNPs) and 14 MTL substructure volumes. A novel association with right Brodmann area 36 volume was discovered in an ERC1 SNP (i.e., rs2968869). Further analyses on larger samples found rs2968869 to be associated with gray matter density and glucose metabolism measures in the right hippocampus, and disease status. Tissue-specific transcriptomic analysis identified the minor allele of rs2968869 (rs2968869-C) to be associated with reduced ERC1 expression in the hippocampus. All the findings indicated a protective role of rs2968869-C in AD. We demonstrated the power of high-resolution MRI and the promise of fine-grained MTL substructures for revealing the genetic basis of AD biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609616PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2020.07.005DOI Listing

Publication Analysis

Top Keywords

medial temporal
8
temporal lobe
8
mri data
8
mtl substructures
8
volumetric gwas
4
gwas medial
4
lobe structures
4
structures identifies
4
identifies erc1
4
erc1 locus
4

Similar Publications

Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.

Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.

View Article and Find Full Text PDF

Biomarker Investigation Using Multiple Brain Measures from MRI Through Explainable Artificial Intelligence in Alzheimer's Disease Classification.

Bioengineering (Basel)

January 2025

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.

As the leading cause of dementia worldwide, Alzheimer's Disease (AD) has prompted significant interest in developing Deep Learning (DL) approaches for its classification. However, it currently remains unclear whether these models rely on established biological indicators. This work compares a novel DL model using structural connectivity (namely, BC-GCN-SE adapted from functional connectivity tasks) with an established model using structural magnetic resonance imaging (MRI) scans (namely, ResNet18).

View Article and Find Full Text PDF

Prefrontal working memory activity slots support sequence memory similar to hippocampal long-term memory position recall.

Neuron

January 2025

Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland. Electronic address:

Prefrontal cortex and medial temporal lobe information processing might not be that different after all. In this issue of Neuron, Whittington et al. show that prefrontal cortex working memory slot activity enables sequence memorizing similar to hippocampal long-term memory.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.

View Article and Find Full Text PDF

Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!