The utilization of metallurgical sludge waste as a 10-30 % replacement of natural sand has been investigated in this paper for its effect on the initial setting time and hydration heat evolution of cement and the mechanical properties of mortars. The results revealed that the addition of metallurgical sludge waste increased the water demand by up to 30 %, delayed the initial setting time by 3 h for 10 %, to over 25 h for 30 % sand replacement, decreased the hydration heat evolution rate by 30 % for 30 % sand replacement, and negatively affected the mortars' mechanical properties from 5 to 40 % for 20 % sand replacement, and from 30 to 50 % for 30 % sand replacement. For 10 % of sand replacement compressive strength was similar to the reference mortar. In order to obtain a shorter initial setting time, decrease the shrinkage and accelerate hydration heat evolution, part of the Portland cement (CEM I) was replaced by calcium sulphoaluminate cement (CSA). It was found that this method was effective for 20-30 % of CEM I replacement by 10 % of CSA and 10-30 % of CEM I replacement by 20-30 % of CSA in the case of setting acceleration, and for 10 % replacement in case of hydration heat evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.123101DOI Listing

Publication Analysis

Top Keywords

sand replacement
20
hydration heat
16
heat evolution
16
metallurgical sludge
12
sludge waste
12
initial setting
12
setting time
12
replacement
10
replacement natural
8
natural sand
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!