High performance biopolymer films are of great interest as effective alternatives to non-biodegradable and petroleum-based polymer films. However, most natural biopolymer films possess weak mechanical and poor gas barrier properties, limiting their applicability. In this work, we developed all-cellulose nanocomposite films through a simple vacuum filtration process, using cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers (TEMPO-CNFs). The TEMPO-CNFs were employed to construct a transparent, free-standing substrate matrix and the CNCs were used as a coating material to improve the mechanical and water vapor barrier properties of the final material. We have demonstrated that the top and bottom CNCs-coated TEMPO-CNF substrates (CNC/TEMPO-CNF/CNC) have excellent mechanical and good water vapor barrier properties. The resulting CNC/TEMPO-CNF/CNC films revealed a high tensile strength of 114 MPa and a low specific water vapor transmission rate (SWVTR) of 19 g∙mm/m∙day. In addition, the CNC/TEMPO-CNF/CNC films were resistant to various solvents including water, ethanol, tetrahydrofuran (THF), and acetone. This type of high performance cellulose nanocomposite can be used as a renewable material for a broad range of potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.123100 | DOI Listing |
iScience
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.
View Article and Find Full Text PDFiScience
January 2025
School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.
Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar.
View Article and Find Full Text PDFJ Vasc Surg Cases Innov Tech
April 2025
Division of Vascular and Endovascular Surgery, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX.
Adverse iliofemoral anatomy represents a unique challenge for endovascular aortic aneurysm repair (EVAR). This report describes a transaxillary EVAR in a patient with severe iliofemoral occlusive disease and an infrarenal aortic aneurysm. A reversely mounted Gore Excluder graft was advanced and deployed in the infrarenal aorta using the left axillary artery.
View Article and Find Full Text PDFRisk Manag Healthc Policy
January 2025
Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, People's Republic of China.
Purpose: The effect of the diurnal temperature range (DTR) on human health in diverse geographic areas and the potential confounding factors are not fully understood. Additionally, while a robust association has been reported between temperature and cardiomyopathy (CM), evidence of the impact of DTR is relatively limited. Here, we determined whether an association exists between DTR and CM hospitalisations in vulnerable populations.
View Article and Find Full Text PDFRisk Manag Healthc Policy
January 2025
School of Public Health, Gudie University Project, Kampala, Uganda.
Aim: This study examined citizens' knowledge and compliance with COVID-19 standard operating procedures (SOPs), vaccine acceptance and hesitancy, and factors that could influence these behaviors.
Methods: The study that utilised the Lot Quality Assurance Sampling (LQAS) approach was conducted in eight districts of Central Uganda; Kiboga, Kyankwanzi, Mubende, Kasanda, Mityana, Luwero, Nakaseke, and Nakasongola districts. Each district was divided into five supervision areas (SAs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!