A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. | LitMetric

Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes.

Sci Total Environ

Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada. Electronic address:

Published: December 2020

We examined the ability of composting to remove ARGs and enteric bacteria in litter obtained from broiler chickens fed with a diet supplemented with Bacitracin methylene disalicylate (BDM) (conventional chicken litter), or an antibiotic-free diet (raised without antibiotic (RWA) chicken litter). This was done by evaluating the litter before and after composting for the abundance of ten gene targets associated with antibiotic resistance or horizontal gene transfer, the composition of the bacterial communities, and the abundance of viable enteric bacteria. The abundance of gene targets was determined by qPCR and the microbial community composition of chicken litter determined by 16S rRNA gene amplicon sequencing. Enteric bacteria were enumerated by viable plate count. A majority of the gene targets were more abundant in conventional than in RWA litter. In both litter types, the absolute abundance of all of the target genes decreased after composting except sul1, intI1, incW and erm(F) that remained stable. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. The major difference in bacterial community composition between conventional and RWA litter was due to members affiliated to the genus Pseudomonas, which were 28% more abundant in conventional than in RWA litter. Composting favoured the presence of thermophilic bacteria, such as those affiliated with the genus Truepera, but decreased the abundance of those bacterial genera associated with cold-adapted species, such as Carnobacterium, Psychrobacter and Oceanisphaera. The present study shows that chicken litter from broilers fed with a diet supplemented with antibiotic has an increased abundance of some ARGs, even after composting. However, we can conclude that fertilization with composted litter represents a reduced risk of transmission of antibiotic resistance genes and enteric bacteria of poultry origin to soil and crops than will fertilization with raw litter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141113DOI Listing

Publication Analysis

Top Keywords

enteric bacteria
24
chicken litter
20
antibiotic resistance
16
litter
13
gene targets
12
conventional rwa
12
rwa litter
12
abundance
8
abundance viable
8
viable enteric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!