Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108758DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
12
mycobacterium bovis
8
tuberculosis
8
bovine tuberculosis
8
mycobacterium
5
bovis persist
4
cattle
4
persist cattle
4
cattle non-replicative
4
non-replicative latent
4

Similar Publications

When a body is discovered at a crime or murder scene, it is crucial to examine the body and estimate its postmortem interval (PMI). Accurate estimation of PMI is vital for identifying suspects and providing clues to resolve the case. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable in the cell nucleus even after death-related changes occur.

View Article and Find Full Text PDF

Efficacy of carbonyl cyanide-3-chlorophenylhydrazone in combination with antibiotics against .

Microbiol Spectr

December 2024

National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China.

Given the intrinsic resistance of to a wide range of conventional antibiotics, it is urgent to explore new therapeutic approaches to manage this infection effectively. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a proton pump inhibitor, has shown good bacteriostatic activity against . This study aimed to determine its synergistic antimicrobial effects when combined with commonly used antibiotics.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) continues to be a major health concern that has a significant impact on morbidity and mortality worldwide. Tubercular meningitis (TBM) may be fatal due to its severe neurological outcomes if not diagnosed and treated promptly. The newer molecular diagnostic techniques have brought significant advancements in the detection of (MTB).

View Article and Find Full Text PDF

Female genital tuberculosis (FGTB) arises from infection and can rarely be caused by or atypical mycobacteria. FGTB usually arises from tuberculosis (TB) that affects the lungs or other organs. The infection can enter the vaginal tract directly from abdominal TB or by hematogenous or lymphatic pathways.

View Article and Find Full Text PDF

Background: Wastewater-based epidemiology (WBE) is already being adopted for the surveillance of health conditions of communities and shows great potential for the monitoring of infectious pathogens of public health importance. There is however paucity of robust data to support extensive WBE in Nigeria. This study evaluated the prevalence of clinically relevant infectious pathogens and provided antimicrobial resistance profiles of bacteria pathogens in wastewater canals in Lagos State at a single point in time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!