The peritoneum is the largest and most complex serous membrane in the human body. The peritoneal membrane is composed of a layer of mesothelium supported by a thin layer of connective tissue. The peritoneum is one continuous sheet, forming two layers and a potential space between them - the peritoneal cavity- which is subdivided into multiple communicating spaces containing small amount of serous fluid that facilitates frictionless movement of mobile intraabdominal viscera. Peritoneum also contributes to fluid exchange mechanism and plays a role in immune response. The peritoneum is subject to many neoplastic and non-neoplastic processes including infections, trauma, developmental and inflammatory processes. Different Nuclear Medicine imaging techniques can be used to diagnose peritoneal diseases, most of these techniques can be customized depending on the clinical scenario and expected findings. Peritoneal scintigraphy can detect abnormal peritoneal communication or compartmentalization. Several nuclear medicine techniques can help characterize intraperitoneal fluid collections and differentiate sterile from infected fluid. PET imaging plays an important role in imaging of different neoplastic and non-neoplastic peritoneal pathologies. Nuclear radiologists need to be familiar with peritoneal anatomy and pathology to interpret peritoneal findings in dedicated peritoneal nuclear medicine imaging studies, as part of more general nuclear medicine scans, or on CT or MRI component of hybrid imaging studies. The purpose of this article is to review the normal peritoneal anatomy, various pathologic processes involving the peritoneum, and different nuclear medicine and hybrid imaging techniques that can help detect, characterize, and follow up peritoneal pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.semnuclmed.2020.04.005 | DOI Listing |
JMIR Res Protoc
January 2025
National Radiotherapy, Oncology and Nuclear Medicine Centre, Korle-bu Teaching Hospital, Accra, Ghana.
Background: Cancer is a leading cause of global mortality, accounting for nearly 10 million deaths in 2020. This is projected to increase by more than 60% by 2040, particularly in low- and middle-income countries. Yet, palliative and psychosocial oncology care is very limited in these countries.
View Article and Find Full Text PDFDiagnosis (Berl)
January 2025
Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Objectives: To examine factors impacting diagnostic evaluation of suspected deep vein thrombosis (DVT) by analyzing the test ordering patterns and provider decision-making within a universal health coverage system in Hungary.
Methods: We analyzed test orders for suspected DVT between 2007 and 2020, and the financial framework influencing diagnostic practices. An anonymous survey was also conducted among Emergency Department physicians to explore factors influencing diagnostic decision-making.
ACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
Aim: To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8).
Background: IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored.
JAMA Netw Open
January 2025
Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles.
Importance: The phase 3 randomized EMBARK trial evaluated enzalutamide with or without leuprolide in high-risk nonmetastatic hormone-sensitive prostate cancer. Eligibility relied on conventional imaging, which underdetects metastatic disease compared with prostate-specific membrane antigen-positron emission tomography (PSMA-PET).
Objective: To describe the staging information obtained by PSMA-PET/computed tomography (PSMA-PET/CT) in a patient cohort eligible for the EMBARK trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!