Photocontrolled Cobalt Catalysis for Selective Hydroboration of α,β-Unsaturated Ketones.

Angew Chem Int Ed Engl

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.

Published: November 2020

Selectivity between 1,2 and 1,4 addition of a nucleophile to an α,β-unsaturated carbonyl compound has classically been modified by the addition of stoichiometric additives to the substrate or reagent to increase their "hard" or "soft" character. Here, we demonstrate a conceptually distinct approach that instead relies on controlling the coordination sphere of a catalyst with visible light. In this way, we bias the reaction down two divergent pathways, giving contrasting products in the catalytic hydroboration of α,β-unsaturated ketones. This includes direct access to previously elusive cyclic enolborates, via 1,4-selective hydroboration, providing a straightforward and stereoselective route to rare syn-aldol products in one-pot. DFT calculations and mechanistic experiments confirm two different mechanisms are operative, underpinning this unusual photocontrolled selectivity switch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692884PMC
http://dx.doi.org/10.1002/anie.202009893DOI Listing

Publication Analysis

Top Keywords

hydroboration αβ-unsaturated
8
αβ-unsaturated ketones
8
photocontrolled cobalt
4
cobalt catalysis
4
catalysis selective
4
selective hydroboration
4
ketones selectivity
4
selectivity addition
4
addition nucleophile
4
nucleophile αβ-unsaturated
4

Similar Publications

Naphthalene Hydrodearomatization via Controllable Photocatalytic Hydroboration.

J Org Chem

December 2024

College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China.

The photocatalytic dearomative 1,4-hydroboration of naphthalenes with an N-heterocyclic carbene borane (NHC-BH) complex was reported herein with controllable regioselectivity and chemoselectivity. This protocol yielded a wide range of naphthalene derivatives bearing various functional groups, notably bioactive compounds. Hydroboration occurred through the cooperation of photoredox and hydrogen atom transfer via boryl radical addition to naphthalene and further selective protonation.

View Article and Find Full Text PDF

Visible-Light-Mediated Radical -Hydroboration of Alkynes with NHC Borane.

J Org Chem

December 2024

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.

Although the radical hydroboration of alkenes with N-heterocyclic carbene (NHC) borane is well documented, the radical hydroboration of alkynes, especially terminal alkynes, remains challenging. Herein, a photoredox-catalyzed radical -hydroboration of alkynes with NHC borane has been developed, which provided various alkenyl boron compounds in moderate to good yields. This protocol exhibits a broad substrate scope, as both internal and terminal alkynes were compatible.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new method for remote functionalization that uses a borenium ion as a catalyst instead of traditional transition metals, addressing issues like metal residue and catalyst poisoning.
  • The process allows for site-selective modification of molecules by enabling the "walking" of a boron group along a carbon chain, ultimately favoring the formation of α-borylation products.
  • This metal-free approach shows compatibility with various functional groups and can facilitate the synthesis of unique compounds, including those helpful in creating bioactive molecules.
View Article and Find Full Text PDF

Nitrogen-doped nanocarbon as a metal-free catalyst for CO hydroboration.

Nanoscale

December 2024

State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, Peoples R China.

Designing heterogeneous metal-free catalysts for highly efficient transformation of CO into valuable products is a dream goal and a long-standing challenge in thermal catalysis. Herein, N-doped nanocarbon catalysts, NOLCx, are synthesized and present an attractive ability to catalyse CO hydroboration. N doping on the NOLCx surface mainly exists in the form of pyridinic N, pyrrolic N and graphitic N, where pyridinic N and pyrrolic N are the possible catalytic active sites.

View Article and Find Full Text PDF

Hydroboration of allenes is powerful and atom-economic approach to the synthesis of organoboranes, such as the highly versatile allylboranes. However, regarding regiocontrol, existing methods uniformly deliver the boron functionality to the less hindered β- or γ-position, but not the α-position. The latter is particularly challenging for allenes with substantial steric difference between the two terminals and lacking electronic bias (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!