To clarify the role of lipoprotein lipase (LPL) in the catabolism of nascent and circulating very low density lipoproteins (VLDL) and in the conversion of VLDL to low density lipoproteins (LDL), studies were performed in which LPL activity was inhibited in the cynomolgus monkey by intravenous infusion of inhibitory polyclonal or monoclonal antibodies. Inhibition of LPL activity resulted in a three- to fivefold increase in plasma triglyceride levels within 3 h. Analytical ultracentrifugation and gradient gel electrophoresis demonstrated an increase predominantly in more buoyant, larger VLDL (Sf 400-60). LDL and high density lipoprotein (HDL) cholesterol levels fell during this same time period, whereas triglyceride in LDL and HDL increased. Kinetic studies, utilizing radiolabeled human VLDL, demonstrated that LPL inhibition resulted in a marked decrease in the catabolism of large (Sf 400-100) VLDL apolipoprotein B (apoB). The catabolism of more dense VLDL (Sf 60-20) was also inhibited, although to a lesser extent. However, there was a complete block in the conversion of tracer in both Sf 400-100 and 60-20 VLDL apoB into LDL during LPL inhibition. Similarly, endogenous labeling of VLDL using [3H]leucine demonstrated that in the absence of LPL, no radiolabeled apoB appeared in LDL. We conclude that although catabolism of dense VLDL continues in the absence of LPL, this enzyme is required for the generation of LDL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329604 | PMC |
http://dx.doi.org/10.1172/JCI113354 | DOI Listing |
Sci Rep
January 2025
Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China.
In addition to being linked to an excess of lipid accumulation in the liver, being overweight or obese can also result in disorders of lipid metabolism. There is limited understanding regarding whether different levels of protein intake within an energy-restricted diet affect liver lipid metabolism in overweight and obese rats and whether these effects differ by gender, despite the fact that both high protein intake and calorie restriction can improve intrahepatic lipid. The purpose of this study is to explore the effects and mechanisms of different protein intakes within a calorie-restricted diet on liver lipid metabolism, and to investigate whether these effects exhibit gender differences.
View Article and Find Full Text PDFSisli Etfal Hastan Tip Bul
December 2024
Department of Pharmacognosy and Medicinal Plants, University of Mosul, College of Pharmacy, Mosul, Iraq.
Objectives: Adipsin and leptin are adipokines that link adipose tissue dysfunction and increased fat accumulation to obesity-related metabolic disorders. This study aimed to assess the effects of sitagliptin/metformin versus metformin monotherapy on the levels of adipsin, leptin, and lipid profile in type 2 diabetic patients.
Methods: This comparative case-control study included 120 participants divided into four groups: healthy participants, newly diagnosed type 2 diabetic patients, metformin-treated patients, and sitagliptin/metformin-treated patients.
Sci Rep
January 2025
Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.
View Article and Find Full Text PDFAtheroscler Plus
March 2025
Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Background And Aims: Vitamin D binding protein (DBP) serves a dual function as a vitamin D carrier and actin scavenger. Free DBP is present in high concentrations in serum, while a smaller pool is bound to lipoproteins like HDL and VLDL. The role of DBP's interaction with lipoproteins remains unclear.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Background: Medications targeting the leptin and Apolipoprotein CIII (APOC3) pathways are currently under development for the treatment of hypertriglyceridaemia. Given that both pathways are implicated in triglyceride regulation, it is unknown whether they function independently or interact under physiological conditions and under acute or long-term energy deficiency.
Methods: APOC3 levels and their association with circulating lipids and lipoproteins were evaluated in the context of two randomised controlled studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!